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Materials and Methods

1. Data collection

1.1 Sampling

We obtained 1,940 samples from 1,287 of 1,306 currently recognized suboscine species
(32-35)(see section 3.1) from existing genomic resource collections at natural history museums
and during recent field expeditions in Malaysia, Brazil, Bolivia, and Peru (Table S43). Field
samples were collected and processed following IACUC protocols A3339-01 (KU), 2012-05
(USNM), and 12-054 (LSU); Comiss&o de Etica de no Uso de Animais do Instituto de
Biociéncias da Universidade de Sdo Paulo (CEUA) — Protocol 227/2015; and ICMBio/MMA
Permanent license for collection of zoological material — 10013-2. We used frozen tissue
samples associated with voucher specimens. For species lacking frozen tissue, we cut toe pad
fragments from dried study skin specimens. We first selected a sample for genomic data
collection from as close to the type locality of each species as possible. In species anticipated to
contain cryptic diversity based on expert knowledge (see Acknowledgements), we sampled
between 1 and 37 additional individuals that might represent cryptic species or deep subspecific
divergences.

1.2 Laboratory methods

We extracted whole genomic DNA from frozen tissues using standard methods and Kits
(Qiagen, Valencia, CA). Toepads were extracted using a similar strategy, but in an ancient DNA
lab where contamination risks were minimized (detailed protocol available at Zenodo
repository). We quantified DNA extracts using a Qubit fluorometer (ThermoFisher, Waltham,
MA) and sent them to Rapid Genomics (Gainesville, FL) for library preparation and sequence
capture following the general protocol of Faircloth et al. (36). This protocol involves
fragmenting the genomic DNA, ligating barcoded Illumina-compatible adapters, PCR
amplification, probe hybridization, and enrichment of hybridized fragments. Samples are then
sequenced in multiplex on lllumina HiSeq 2000, 2500, 3000, and X platforms. We conducted
sequence capture using a probe set designed to target genomic ultraconserved elements and
conserved exons used in prior avian phylogenetic studies (37). This probe set contained 4,715
probes targeting 2,321 UCEs and 96 exons.

1.3 Assembly and filtering

We assembled reads into multiple sequence alignments using a pipeline based on the Phyluce
assembly pipeline (38) with additional code written for this project (31). We mapped contigs
assembled with Velvet (39) and VelvetOptimiser (40) to target loci using a modified Phyluce
script (extract_UCE_bypass.py) to generate a reference for each sample. We then used BWA
(41) to map all reads for that individual back to the reference. In cases where the reference
assembly was poor (fewer than 1000 loci recovered), we mapped the reads from that sample to
reference sequences assembled from one or more samples the same species or a close relative
(Table S8). After mapping, we called SNPs and indels and exported consensus sequences for



each locus in each sample using SAMtools (42). We hard-masked trailing low-quality bases
(<Q20) within resulting consensus sequences using seqtk (see Zenodo repository), trimmed both
ends to remove leading or trailing low-depth (<5x) sites, collated sequences by locus using
MySQL, and then generated final alignments across samples using MAFFT (43). We used as
many as 18 dual 10-core 2.8 GHz Intel Xeon E5-2680 v2 CPUs with 64GB RAM on the Cypress
cluster (Tulane University, New Orleans, LA). The MySQL database was stored on either a Mac
Pro (late 2013) with 32GB RAM and an 8-core processor or ASUS 12-core machine with 16GB
RAM.

Visual inspection of MAFFT alignments revealed long ragged ends containing high
amounts of missing data and blocks of obvious non-orthologous sequences that were spuriously
aligned. Missing data, particularly non-randomly distributed missing data, can be problematic for
many phylogenetic methods (44, 45). Divergent perspectives exist about the degree to which
filtering out missing data is advisable (46, 47). Accordingly, we examined both an aggressive
and a minimal strategy for filtering alignment columns. First, we used an aggressive filtering
strategy in Gblocks 0.91b (48). Gblocks is a program for removing poorly aligned positions and
divergent regions of an alignment as well as alignment columns with missing data. We used the
the “with half” option for gaps, which removes alignment sites that are missing from 50% or
more of the sequences and flank depth set to 1,639. This alignment set is referred to as the
aggressively filtered dataset in the main text, but is hereafter called the “HGAPF” (for “half gaps
filter”) dataset in the supplemental. Second, we used a minimal filtering strategy in which we
only trimmed the extreme ends of alignments by removing columns with data for fewer than 400
(of 1,962) samples. This alignment set is referred to as the minimally filtered dataset in the main
text, but is hereafter referred to as the “T400F” (for “trim 400 missing filter”’) dataset. Sets of
alignments filtered using these divergent strategies allowed us to assess the impact of the
inclusion of missing data on downstream analyses.

After filtering by columns to remove missing data, it was evident that some individual
sequences contained isolated stretches of non-orthologous sequence information. These were
discrete stretches of primarily private or near-private alleles that contrasted sharply with adjacent
good stretches of sequence. We removed these spurious sequence stretches using a variable-
width sliding window approach in which any sequence stretches with more than 25% private and
more than three total private or near-private alleles were removed (ambi_sites_filter.py). Some
individual sequences also had stretches of two-way ambiguity codes (M, R, W, S, Y, or K).
These stretches of heterozygous sites appeared to represent locations where paralogous reads
erroneously mapped to the sequence, resulting in two alternative alleles for many sites. We
therefore implemented another variable-width sliding window filter to remove stretches with
more than 5% of sites containing a two-way ambiguity code and more than 3 two-way ambiguity
codes total. We cleaned up filtered sequences by removing hanging ends containing fewer than
10 nucleotides. Based on visual inspection of the alignments, this strategy effectively removed
most obviously non-orthologous sequence segments in the alignments without removing
orthologous data, such as divergent regions in outgroup taxa or species expected to occur on long
branches in the phylogeny.

1.4 Genome mapping

We established the genomic position of each locus by mapping to an existing genome.
Currently, no suboscine has an assembled genome containing high-quality chromosome
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assemblies, so we mapped loci to the Zebra Finch (Taeniopygia guttata) genome (v.3.2.4), the
most complete oscine passerine assembly (49). Zebra Finch shares a common ancestor with all
suboscines sometime between 27 and 63 Ma (14, 50, 51). To obtain a consensus sequence for
mapping, we selected the most common allele across ingroup taxa at each variable site, trimming
flanking nucleotides with missing data for most samples. We used blastn (52) for mapping to the
Zebra Finch genome, and used the position of the top-scoring hit. We used the positions of
protein-coding genes from Zebra Finch annotation release 103 to identify whether each locus
was within a coding region. Loci were considered to fall within a coding region if any portion of
their conserved core, as defined above, mapped to an annotated gene. Some subsequent analyses
were performed separately on autosomal and sex-linked partitions and partitions containing loci
either overlapping or not overlapping annotated coding regions. We also measured the GC
content of each locus and the distance between loci on the same chromosome or scaffold.

2. Phylogeny estimation and support

2.1 Heterogeneity in phylogenetic signal across loci

We estimated gene trees for each locus using the maximum likelihood method
implemented in RAXML v8.2.8 (53). For a random subset of 100 loci, we compared the fit of the
GTRGAMMA model to JC69, HKY85, and K80 models using small-sample corrected Akaike
Information Criterion (AlICc) scores. We calculated AlCc scores using final likelihoods, sample
sizes based on number of alignment patterns, and the numbers of free parameters including
branch lengths output by RAXML. The GTRGAMMA model was the best-fitting model across
most loci (see Supplementary Text), and was used for the remainder of the gene tree analyses.
We also computed an estimate of topological support for every node in each gene tree using the
SH-like approximate likelihood-ratio (aLRT) test (54) implemented in RAXML. We used this
measure to distinguish between nodes that were supported by a given gene tree and those without
statistical support. We examined gene tree heterogeneity by measuring the Robinson-Foulds
(RF) distance between each pair of gene trees using the R (55) package phangorn (56), after
trimming them to the set of shared tips between a given pair. To normalize for differences in tree
size across pairs, we divided each RF distance measurement by the maximum possible RF
distance.

2.2 Species trees using concatenation

We estimated species trees from concatenated datasets using ExaML (57) on the Cypress
cluster. ExaML is a method for maximum likelihood inference of phylogenies on
supercomputers using MPI. First, following ExaML developer recommendations, we generated
100 bootstrap alignments using RAXML and 100 random seed trees. We then found the ML tree
for each bootstrap alignment under per-site rate category model (equivalent to CAT in RAXML).
We chose 1 in 5 bootstrap trees (n=20) and used those as the seed trees for an ML search under
per-site replicate for the original alignment. We conducted branch-length evaluation (“-f E”) for
each of the 20 rough trees under GAMMA (equivalent to GTRGAMMA in RAXML). We
selected the 10 trees with the highest likelihoods, conducted a second ML search under
GAMMA for those 10, and identified the tree with the highest likelihood as the final tree. We
used RAXML to summarize the 100 bootstrap trees on the final complete alignment tree. We



conducted ExaML analyses on both the T400F and HGAPF alignments, partitioned by locus. We
also conducted ExaML analyses on subsets of the T400F alignments representing: (1) only loci
mapping to z-linked loci, (2) loci mapping to autosomes, (3) loci mapping to genes, and (4) loci
mapping to noncoding regions. The process for these trees was identical to that described above,
except we initially generated only 20 bootstrap trees for seeding the full ML search and did not
examine bootstrap support for the final ML trees.

As an alternative metric of support for each node, we tallied the proportion of rooted gene
trees containing each clade using phyparts (58). We used gene trees based on the T400F locus
alignments to evaluate the T400F consensus tree, and based on the HGAPF locus alignments to
evaluate the HGAPF consensus tree. We first removed from consideration (collapsed) nodes that
were poorly supported statistically (SH-like aLRT scores <80; following 54, 59).

2.3 Gene tree/species tree analyses

We used ASTRAL-I1I (60) to estimate coalescent-based species trees from the individual
RAXML gene trees. Astral estimates a species tree from unrooted gene trees by finding the
topology with the maximum number of induced quartet trees shared with the gene trees.
Following Mirarab and Warnow (61), we ran Astral on the maximum likelihood gene tree
estimate from each locus, and used RAXML gene trees in which poorly supported nodes (SH-like
aLRT scores <80) were collapsed. We evaluated support for each node using the local posterior
probabilities assigned by ASTRAL (62) and by calculating the proportion of rooted gene trees
containing each node after collapsing gene tree nodes with SH-like test scores <80. ASTRAL
provides branch lengths in coalescent units, but we also were interested in estimating branch
lengths for the ASTRAL tree in units of substitutions, in particular for the purpose of eventual
time calibration. We therefore also estimated branch lengths in number of expected substitutions
in ExaML with the topology fixed to the Astral topology. We conducted branch length
estimation (-f E) as in section 2.2 above using the GAMMA model.

2.4 Time calibration

To obtain a time-scaled tree, we estimated the age of calibration nodes using the fossil
record (63) and applied the calibrations using a node-based penalized likelihood approach (64,
65). We selected calibration nodes that correspond to the most recent common ancestor of clades
within which high-quality, old fossils have been found and studied. We then estimated the age of
the clade based on the density of its fossil record (63). We calculated the unbiased point estimate
of clade age as tn + to/n and the confidence interval as [tn, t/(1-p)*"], in which t, is the age of the
oldest fossil, n is the number of fossils, and p is the confidence level (66, 67). The above
formulae assume sample independence, which was maximized by using only the first fossil
occurrence of the clade in each continent. Using multiple fossils from the same region may
confound the time of origin with the time of colonization of the region (13). The method also
assumes that fossil finds are distributed uniformly along the time interval. We checked for
uniformity of the sample of fossil ages of each clade within the interval [0, t, + to/n] using a
Kolmogorov-Smirnov test. Finally, the method assumes a precise age for the oldest fossil. Age
uncertainty for oldest fossils in our dataset were below 3 million (see below) years so we used
the midpoint of the corresponding time interval as the age of the fossil.



We used four calibration nodes. Two of these nodes represent direct ancestors of the
Tyranni and two of them are within the oscine outgroup. The first direct ancestor corresponded
to the time of origin of Passeriformes, i.e. the most recent common ancestor of Passeriformes and
Psittaciformes. The latest phylogenetic analyses of fossils in this group revealed that
Pseudasturidae and Halcyornithidae, used in previous calibrations, are outside this clade (68) and
Morsoravis sedilis, from the Fur Formation (54-54.5 Ma; 69), becomes the oldest fossil of stem-
Passeriformes (68, 70). First occurrence of birds in the Psittaciformes-Passeriformes clade in
each continent is detailed in Table S9, which leads to an estimate of 59.9 Ma for the time of
origin of Passeriformes, which we used as a fixed age.

The second direct ancestor calibration corresponded to the most recent ancestor of the
clade containing the suborders Tyranni and Passeri (informally named eupasseres), with
Wieslochia weissi (71), from Rauenberg (32-30.5 Ma; 70) as the oldest fossil. The position of
Wieslochia weissi as a stem representative of the Tyranni is supported by the presence of a well-
developed processus procoracoideus, a well-developed tuberculum ligamenti collateralis
ventralis of the ulna (13, 71), and confirmed by a cladistic analysis (70). Because using a single
fixed age for this node would prevent other calibrations from influencing the age of the Tyranni,
we used minimum-maximum bounds based on the confidence interval [31.3Ma, 47.25Ma]. The
other two calibration nodes are in the oscine outgroup. One corresponds to the superfamily
Certhioidea, with Certhiops rummeli from Petersbuch 62, in Germany (18-20.5 Ma; 73), as the
oldest fossil. Because a precise relationship of Certhiops within the Certhioidea is not known, we
used minimum-maximum bounds [19.25Ma, 52.25 Ma] for calibration. The second calibration
corresponds to the clade formed by Passeridae and the nine-primaried oscines (Emberizoidea),
with early Miocene fossils in the genera Passer and Loxia described from Saint-Gérand-le-Puy,
France (20-22.4 Ma; 74). Again, given uncertainty in the precise phylogenetic placement of the
oldest fossils, we used minimum-maximum bounds of [21.2Ma, 38.6 Ma] for calibration. A
complete list of fossil ages used for estimating age and confidence intervals of calibration nodes
is presented in Table S9.

We used these calibrations to rescale the branches of the T400F and HGAPF ExaML
trees and the T400F Astral tree (with branch lengths estimated in ExaML) using the penalized
likelihood approach (64) implemented in TreePL (65). We used an optimal smoothing parameter
determined by the “random subsample and replicate” cross-validation method. Terminal branch
lengths from poor quality samples, such as toe pads, were unreliable because low-grade
contamination and errors produced an excess of private alleles (75). The resulting inflated
terminal branch lengths can bias time calibration deeper in the tree. We therefore conducted
TreePL analysis initially on a dataset in which toepads and samples with evidence of low-grade
contamination (n = 124; Table S10) were removed. We then added low-quality samples to the
initial time-calibrated tree using congruification (76) with the TreePL option for time-scaling
implemented in geiger-v2 (77). We also examined results of a TreePL analysis without the
removal and re-addition of poor-quality samples. We further evaluated the impact of the
inclusion of each individual sample on time calibration using a jackknifing procedure on the
T400F ExaML trees.

To assess the impact of calibration and branch length estimation errors on divergence
time estimates we used a resampling procedure as follow. We used the trees derived from the
100 bootstrap alignment to represent variation in branch length estimation. Each tree was then
calibrated using TreePL as before but, instead of using the unbiased point estimate for the origin
of Passeriformes, we used a random number obtained from the quantile function tn/(1-p)*" by



sampling p from a uniform distribution between 0 and 1. We summarized the results by
computing the 2.5% and 97.5% quantiles of age for each node based on the 100 calibrated trees.

We supplemented this approach with a full Bayesian method that simultaneously
estimated the tree topology and divergence times (BEASTZ2; 78). Unfortunately, it was
impossible to do run BEAST using the full dataset, so we estimated this tree at the family level
only. We used the sample with the most complete data in each family (n=24) as well as five
outgroup samples. Even then, we needed to subset the data matrix to 50,000 alignment columns
(all of which had complete data) to achieve convergence. An initial configuration file was
created in BEAUtI but was then edited manually to generate the final file. Substitutions were
modelled using a GTR model with a gamma mixture for rate heterogeneity. A relaxed log-
normal clock was used to model absolute rate heterogeneity across branches (79). Calibration
densities were set so as to match the main penalized likelihood analysis: a fixed age of 59.9 Ma
for the origin of Passeriformes, and uniform distributions with minimum-maximum bounds
based on the confidence intervals for each clade as before. We used a birth-death tree prior with
incomplete sampling (80) that takes into account that the family-level dataset is a small fraction
of the species diversity of the group. We used the BDSKY 1.4.5 BEAST add-on (817) to
implement a ‘birth-death skyline contemporary’ prior in which we set a uniform prior (0,
infinity) for the birth/total death ratio (effective reproduction number R0), a uniform prior (0,
infinity) for the “total death” rate (“become uninfectious™) prior, and a fixed sampling
probability (p) of 0.0044, the approximate fraction of species sampled (29 species of ca. 6600
species of Passeriformes plus Psittaciformes). BEAULti defaults were used for other priors. We
ran two chains of 50 million generations, discarded the first 10 million generations as burn-in
and evaluated stationarity and convergence.

3. Diversification analyses

3.1 Taxonomic classifications

The classification used to determine the set of tips on a phylogeny will impact
diversification inferences. We therefore examined a series of alternative classifications and their
impact on diversification estimates (Table S43). Our primary classification follows the fourth
and most recent edition of the Howard and Moore Complete Checklist of the Birds of the World,
published in two volumes (34, 35). This list heavily references the literature and includes
detailed footnotes, and follows the authoritative taxonomic entities for the New World, the North
American Classification Committee (NACC) and South American Classification Committee
(SACC) of the American Ornithological Society (AOS). However, the most recent version of the
Howard and Moore classification does not include the most recent NACC and SACC changes.
We therefore updated the classification to reflect the most recent decisions of the AOS
committees (32, 33). For analyses and plots examining taxonomic families, we used the family-
level classification from the Howard and Moore list (34, 35), except we replaced the family
name Pipromorphidae with Rhynchocyclidae, following the recommendation of Tello et al. (82).

The second classification we examined, the eBird/Clements Checklist (83), is almost
identical to the Howard and Moore list for the species examined, because it also follows closely
the NACC and SACC treatment for New World birds. It does, however, differ somewhat from
the Howard and Moore list for the Old World taxa (Table S43). We again updated the
eBird/Clements Checklist to reflect decisions from the SACC (there have been no NACC



updates) since the last version (August 2017). The third classification examined was that of the
International Union for Conservation of Nature (IUCN) and BirdLife International. This
classification does not follow the decisions of society-based taxonomic committees, but instead
uses a standard rubric of differentiation in morphological and acoustic characters, scored by
experts, to determine species limits. It generally subdivides species (“splits”) to a greater degree
than the two classifications above. We again used the most recent edition (v2, December 2017;
http://datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-
BirdLife_Checklist_v2%20Dec17.zip), which is based on a two-volume publication (84, 85).

We also conducted analyses using sets of tips determined using simple time thresholds
rather than the advice of taxonomic authorities. In one tree, we trimmed all nodes <1 Ma, and in
another all nodes <2 Ma. Finally, we examined the results of analyses examining our full tree
including all intraspecific lineages. Use of these six alternative classifications permits
straightforward mapping of suboscine evolutionary diversity to currently recognized taxonomic
groups, and also permits evaluation of the impacts of taxonomic uncertainty and the sampling of
cryptic diversity on our results.

3.2 Diversification through time

We first examined the dynamics of lineage accumulation through time in suboscines
using simple summaries of lineage accumulation and by fitting simple models of diversification
to the tree as a whole. We visualized the accumulation of new extant lineages using lineage-
through-time (LTT) plots. We also fit pure-birth, birth-death, and diversity dependent models to
our tree using maximum likelihood (86, 87). We compared LTT plots from the datato LTT plots
of 1000 trees simulated using parameter values based on model fit and conditioned on lineage
age. We compared the fit of constant-rate and diversity dependent models to our tree using AlCc.
For subclades, we examined LTT plots for all lineages crossing a threshold set at the median age
of currently recognized suboscine families (19.5 Ma). In figures and tables, these clades are
generally referred to by the name of the most speciose family included therein for brevity.

We supplemented these analyses with stochastic-branching process models in maximum
likelihood and Bayesian frameworks (88, 89). We obtained maximum likelihood diversification
rate estimated for 5 Ma intervals between 0 and 40 Ma with the bd.shifts.optim function in the R
package TreePar (88). In addition, we used the TESS library in R to estimate parameters of an
episodic birth-death model that assumes that diversification rates are constant but can change at
particular points in time across all lineages. The number, timing, and magnitude of shifts in
diversification rates are then estimated using reversible-jump MCMC. The hyperpriors for the
diversification parameters were determined empirically based on a preliminary analysis as
implemented in TESS functions (90). The MCMC sampling was run until a minimum of 500
effective samples had accumulated but not for longer than 100,000. Results were summarized by
plotting the posterior mean and 95% credible intervals of the speciation rate through time.

Recently, the possibility of identifying unique diversification scenarios from phylogenies
of extant species has been challenged (18). Simulations suggest that distinct evolutionary
histories can lead to quite similar phylogenies, and that commonly used parameters such as
speciation, diversification, and extinction rate fail to distinguish between these alternative
histories. Louca and Pennell (18) do, however, suggest that sets of congruent diversification
models can be uniquely identified using certain composite variables of phylogenetic branching
patterns, and they identify two such variables that are particularly useful. These are the pulled
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diversification rate (rp) and an initial condition equal to the sampling fraction times the present-
day speciation rate (no). We used the R package castor (18, 91) to estimate these variables using
maximum likelihood. We fit both variables both to the tree as a whole, and to a time grid of 25
evenly spaced time points assuming a piecewise linear curve (omitting times prior to 35 Ma to
avert estimation error associated with the small number of lineages prior to that time). We ran
100 bootstrap replicates to evaluate uncertainty and ran optimization ten times each for both the
real data and the bootstrap samples. For visualization, splines were interpolated using 1000
points within the sampling interval.

3.3 Tip-based estimates of speciation rate and species age

We examined diversification patterns across geographic space and among lineages, first
using estimators based on waiting times between speciation events across the tree. Simulation
studies have found these estimators are reliable measures of evolutionary processes under many
scenarios (92-94). Waiting times statistics are particularly useful in a young, diverse clade like
the suboscines that is likely experiencing a net increase in diversity. They are also appealing
because they can be calculated quickly from large phylogenies.

We examined four statistics based on branching times. First, we estimated speciation
rates using the inverse equal splits method (ES; 95, 96). This is based on the sum of the lengths
of the branches subtending each tip on the phylogeny, with the branch’s length weighted
according to its distance from the tip. With each step toward the root, the branch is down-
weighted by %. This estimator therefore captures speciation dynamics throughout the history of a
lineage within the sampled tree, but is heavily weighted toward the present. We refer to these as
“recent” speciation rates, but emphasize that recent is a relative term rather than an absolute time
interval. We also examined two metrics of species age. One was based on the terminal branch
length of each tip (TB), and the other on the median age of each tip’s subtending nodes (ND).
Both metrics have been used to measure the age of diversity across species or space (e.g., 97-98).
Finally, we calculated evolutionary substitution rate (SR) as the ratio of the total root-to-tip
distance from the ExaML tree, which reflects the expected number of substitutions per site, to
the total height of the time-calibrated TreePL tree, which reflects time (see, e.g., 99).

We examined variation in all four estimators across the phylogeny and across geographic
space. We calculated the estimators using phylogenies for each of the six alternative
classifications described in section 3.1. In addition to obtaining all four statistics for all
phylogenetic tips, we calculated ES and SR for each internal branch on the tree. ES for internal
branches was calculated using the same formula as for the terminal branches, and SR reflected
the ratio of the length of each branch in the non-ultrametric ExaML tree to the same branch in
the time-calibrated TreePL tree.

We mapped variation in average values of these estimators across the globe. We used the
R packages rgdal (100), raster (101), maptools (102), maps (103), rworldmap (104), and sp (105,
106) to generate a raster with 200km? cells for each statistic. Cell values were weighted means
calculated by weighting each species’s value by the inverse of the number of grid cells in which
it occurred. This strategy minimizes the excessive impact of wide-ranging species on perceived
geographic patterns (96). However, we also examined unweighted maps, and mapped statistics
for quartiles of species based on their range sizes following Jetz and Rahbek (107). We used
species range maps from IUCN/Birdlife International (108), cleaned and re-projected using the
equal area World Mollweide projection (http://www.greenfirescience.com/data). We pruned each
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range map to include only native ranges and only breeding and resident distributions. The
taxonomic classification used for range maps was identical to the most recent (December 2017)
IUCN/BirdLife international classification for the species examined. For visualizing statistics
using the Howard and Moore and eBird/Clements classifications, we combined range maps from
IUCN/BirdL.ife species that were treated as conspecific in either of those classifications. We did
not map estimates using the classifications based on 1 Ma or 2 Ma thresholds or treating all
samples as tips because it is not clear how the tips from those classifications map to the
IUCN/Birdlife species. We also mapped species richness using a similar approach, but did not
discount richness values by species range size.

3.4 Model-based analyses of branch-specific speciation and extinction

We supplemented the above analyses of diversification rates with a set of probabilistic
modelling approaches. We were interested confirming patterns of variation in speciation rates
across the tips of the tree estimated using ES, and also in determining whether there is support
for heterogeneity in rates at the level of larger clades. A suite of parametric modeling approaches
is available for branch-specific diversification rate estimation, but many have either received
criticism (see e.g., 109, 110) or are very new and have not been independently tested. We
therefore examined six different approaches to integrate over potential bias associated with any
individual method.

First, we used Bayesian Analysis of Macroevolutionary Mixtures (BAMM; 111, 112) to
identify distinct diversification models across the phylogeny and their respective constant or
time-varying speciation and extinction rates. BAMM is a Bayesian method that uses reversible-
jump Markov chain Monte Carlo (MCMC) to sample different combinations of models. We
conducted BAMM runs using each of the six classifications from section 3.1. We set up BAMM
analyses following current best practices and author recommendations (113, 114) and examined
the results with a series of priors (1, 10, 100) on the expected number of diversification shifts.
We conducted a no-data run to examine estimates based only on prior information. Each analysis
was run for 200 million generations, sampling every 20,000. We conducted multiple runs to
check for convergence, and also checked the traces and effective sample sizes of key parameters
and log Likelihood values using coda (115) and BAMMtools (116). We discarded the first 10%
of samples as burn-in. We examined the credible shift set from each run, and identified the shift
configuration with the highest maximum a posteriori probability using the
getBestShiftConfiguration method.

We also used MEDUSA (117) to estimate the best combination of distinct diversification
rate models across the tree, each model containing constant speciation and extinction rates
through time. MEDUSA uses stepwise AIC to compare the likelihoods of increasing numbers of
diversification models fit to a phylogenetic tree. We used turboMEDUSA, now implemented in
geiger-v2 (77). We ran multiple analyses using each of the six classifications described in section
3.1.

We examined a pair of approaches implemented in RevBayes (118). We followed
developer recommendations (see Zenodo repository) to evaluate diversification rate under both a
conditional birth-death-shift process (CBDS) and finite-rate-category birth-death-shift
(FRCBDS) process. The former draws diversification rates from a continuous distribution but
assumes rates cannot shift on extinct lineages, whereas the latter does not assume shifts are
absent on extinct lineages but draws rates from a discretized distribution with a limited number
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of rate categories. For both approaches, we ran RevBayes analyses of 2 chains, each with a 100
thousand-generation burn-in followed by at least 437,500 sampling generations. We evaluated
MCMC convergence between and within chains using Tracer v.1.6 (119). We examined runs
with the prior for expected number of rate shifts set to 1, 10, and 100. For the finite-rate-category
analysis, we used a discretized log-normal distribution containing 20 rate categories.

We used a Multi-State Birth-Death (MSBD) model (120) to estimate lineage-specific
speciation and extinction rates. MSBD allows these rates to vary across the tree independently of
any trait by permitting state changes in rates along branches through time. We ran MSBD in the
BEAST2 framework (78) for 250 million generations (discarding the first 25% as burn-in) using
a fixed tree topology (our primary tree) and broad, log-normally distributed priors. We evaluated
MCMC convergence using Tracer v.1.6 (114). We used a TipRatesLogger to generate a posterior
sample of tip speciation rates and used posterior median rates as point estimates following
Barido-Sottani et al. (120).

Finally, we used the Cladogenetic Diversification Rate Shift (ClaDS) model (121).
ClaDSs is a birth-death model where the rates of a daughter lineage are inherited, or sampled
from a distribution parameterized using the parental rates. We attempted to run ClaDS models
incorporating constant (ClaDS1) or lineage-specific (ClaDS2) extinction, but they were
computationally intractable with a tree of this size. We therefore were limited to examining a
pure-birth model (ClaDS0). We ran ClaDSO0 in the R package RPANDA (122) for 1 million
generations (discarding 25% as burn-in). We visualized parameter chains, evaluated
convergence, and obtained tip rates using the function MAPS_ClaDS0() to summarize the
marginal posterior distributions from the sampler.

3.5 Collection of geographic, species richness, elevation, and climatic data

We obtained data for each study species on a suite of extrinsic variables that might be of
evolutionary importance. We used the range data and geographic areas described in sections 3.3
and 3.4 above to obtain geographic variables. Latitude was based on the absolute midpoint
latitude of the combined breeding and year-round distribution for each species. Species were
assigned to a primary geographic region (Neotropics, Nearctic, or Old World and Australia)
using the boundaries from Olson et al. (123) based on the region containing the largest fraction
of their distribution. For each suboscine species, we calculated the number of other suboscines,
passerines (Aves; Passeriformes), or all birds with overlapping ranges. Other species were
considered overlapping if their range occupied 5% or more of the focal species’ distribution by
area. See below (Supplementary Text: Additional Results, section 9.8) for examination of the
impact of spatial autocorrelation on range overlap data.

We assigned elevation based on the data from Quintero and Jetz (8). We examined
elevational minimum, midpoint, and maximum. Species not from mountainous regions were
assigned an elevation minimum of Om, maximum of 150m and midpoint of 75m, following the
treatment of “Coastal/Marine” species by Quintero and Jetz. Climatic data were obtained from
current data and paleoclimatic simulations available from the PaleoClim portal (124). We
examined data from five time periods: the present (1973-2013; 124), the Last Glacial Maximum
(ca. 21 ka; 125), MIS19 (ca. 787 ka; 124), the mid-Pliocene warm period (3.264-3.025 Ma; 126),
and M2 (ca. 3.3 Ma; 127). For present-day climate, we examined annual mean temperature
(Biol), temperature seasonality (Bio4), max temperature of the warmest month (Bio5), minimum
temperature of the coldest month (Bio6), annual precipitation (Biol2), precipitation seasonality



(Biol5), precipitation of the wettest quarter (Bio16), and precipitation of the driest quarter
(Biol7). To address climatic stability through time, we calculated the average difference in both
annual mean temperature and annual precipitation between either the last glacial maximum and
present (Stability1) or between all successive time periods (Stability2). We obtained climate
values for each species by overlaying climatic data and species range maps and calculating
mean, median, and variance in values across the distribution of each species for each variable.

Other extrinsic or environmental variables might be important predictors of species
richness or diversification dynamics. For example, the age or stability of contemporary habitat or
vegetation may be the key determinant of spatial dynamics in avian diversity. Unfortunately,
high-resolution paleo habitat and vegetation data are unavailable, thus these metrics are not
obtainable currently. Many environmental variables show strong spatial autocorrelation, and
distinguishing their relative importance can be challenging (128). We used the variables
described above as a diverse suite of variables, with available high-resolution paleo and
contemporary data, that together capture environmental variation across space.

3.6 Biogeographic analyses

Spatial patterns of branching pattern statistics reflect in part the biogeographic history of
a group. We therefore conducted a biogeographic analysis to supplement, and provide historical
context for, those results. We used the dispersal-extinction-cladogenesis model (DEC; 129) as
implemented in the R package BioGeoBEARS (130) to model the range evolution of suboscine
lineages and infer ancestral states. We then used biogeographical stochastic mapping (BSM;
131) to infer the number and type of bioegeographic events, with a particular focus on the
number of transitions between geographic areas. We examined a simple set of three
biogeographic areas representing the (1) Neotropics, (2) the Nearctic, and (3) Old World and
Australia. Species were assigned to one or more biogeographic areas based on overlap of their
IUCN/Birdlife International range maps with these regions, with presence only assigned if
greater than 5% of the area of their range fell within a particular biogeographic area (Table S11).
The boundary between the Neotropical and Nearctic regions was determined using the
biogeographic realms of Olson et al. (123). We ran the DEC model without time-stratification
and built 100 biogeographic stochastic maps. We then tallied the number of dispersal events in
each map. We also ran BioGeoBEARS analysis with a more subdivided set of regions, also
based on those of Olson et al. (123) combined largely following Morrone (132; see Fig. S11).
These were intended to capture colonization history among biomes, particularly within the
Neotropics.

3.7 Testing associations between speciation dynamics and potential predictors

We used tip rate correlation (TRC) tests and state-dependent speciation and extinction
(SSE) models to evaluate associations between suboscine speciation dynamics and potential
predictor variables. For binary variables (e.g., comparisons between geographic regions), we
used the simulation-based approach (FISSE) presented by Rabosky and Goldberg (133). This test
involves comparing the observed association between the estimated speciation rate and a variable
scored at all phylogenetic tips with a null distribution of associations between the statistic and
simulated variables produced by random change (modeled using a Mk model) across the tree
(n=1000 simulations). The Mk model is a simplistic approximation of change in geographic



areas across a phylogeny, but involves minimal assumptions (i.e. geographic shifts can occur at
any point and in either direction with equal probability). Although Rabosky and Goldberg
focused on differences between groups in the inverse equal splits estimator (ES) in FISSE, we
apply equivalent tests to measure between-group differences in our other estimates of branching
patterns (TB, NH, and SR).

We assessed associations between speciation and age estimates and continuous variables
using the related TRC approaches for continuous characters presented by Harvey and Rabosky
(94). These tests compare the linear association between a trait and tip-specific speciation rates
to that between the same estimate and a set of traits simulated using a random model of
continuous trait evolution (n=1000 simulations). For our analyses, we used Brownian motion to
model random evolution. Brownian motion, like the Mk model for geographic areas, is a simple
approximation of the process of geographic range evolution across a latitudinal gradient with few
assumptions.

We supplemented these tests with analyses using equivalent SSE models: BiSSE (134)
for discrete geographic regions and QuaSSE (86, 135) for continuous variables (e.g., latitude,
species richness). BiSSE and QuaSSE can be used to assess the association between trait states
and speciation (or extinction) rates. BiSSE and QuaSSE are more sophisticated than the tests
described above in that they simultaneously model speciation, extinction, and trait change across
a phylogeny. They are, however, subject to high rates of false inferences of state-dependence
(136), and have been shown to have higher false inference rates than simulation-based tests using
branching pattern statistics (94, 133). We used BiSSE and QuaSSE to examine models in which
(1) there were no associations between diversification and predictor variables, (2) there was an
association between speciation rate and the variable, (3) there was an association between
extinction and the variable, or (4) there were associations between both speciation and extinction
and the variable of interest.

Due to the issue of high false inference of state-dependence, we also examined key
results using an SSE approach that alleviates this issue. The HiSSE approach (137) includes a
more sophisticated null model of speciation rate variation across the phylogeny, and also can
incorporate models in which diversification is linked to a hidden or unknown variable rather than
the variable of interest. Unfortunately, HiSSE is only implemented for binary characters, unlike
many of our key variables like species richness. To circumvent this, we converted species
richness to a binary trait using thresholds to distinguish species occurring in species-rich areas
(trait=1) from those in species-poor areas (trait=0). This approach permits the use of HiSSE, but
necessarily has less power as much of the variation in the predictor variable is removed. The
threshold represents the proportion of species placed in the species-rich category. We explored a
suite of thresholds (10-90 percent quantiles, every 10) to evaluate the impact of threshold
delineation on results. We compared four models: (1) with an association between species
richness and speciation rates, (2) a simple BiSSE null model, (3) a more sophisticated HiSSE
null model allowing speciation rates to vary along branches independent of trait change, and (4)
a model involving associations between speciation rate and both species richness and an
unmeasured hidden trait. These model comparisons were selected to aid in identifying whether
observed richness/speciation associations were real or were driven by variation in diversification
that was either random or linked to unobserved variables.

We elected to use BiSSE rather than GeoSSE (“Geographic State Speciation and
Extinction”; 138) for three reasons. First, it is more closely analogous to our use of FISSE, which
examines a simple binary variable, above. Second, BiSSE and GeoSSE are effectively equivalent



when species do not span both geographic areas. In suboscines, no species are shared between
the New World and Old World. Few species are shared between the Nearctic and Neotropical
regions, and assigning species to one region, the other, or both is complex because many of the
species spanning both regions are long-distance migrants. Finally, when considering both
summer and winter distributions, no species are limited to the Nearctic region, and the likelihood
model implemented in GeoSSE behaves poorly when a state is missing.

3.8 Sensitivity tests of key associations

We ran a series of sensitivity tests to evaluate whether key associations between
diversification dynamics and predictor variables were robust to factors including phylogenetic
uncertainty, incomplete sampling, extinction, alternative taxonomic classifications, and the
effects of spatial autocorrelation in species richness estimates. Details of the methods used for
sensitivity tests are generally brief and are presented alongside the results of those analyses
below in the Supplementary Text: Additional Results, section 9.

3.9 Phylogenetic path analysis

We used phylogenetic path analysis (139) to evaluate models containing causal
relationships between speciation rates and multiple potential predictor variables including direct
and indirect effects. In particular, we were interested in whether speciation rates were determined
by the environment or instead by standing species richness in a region, which might in turn be
environmentally driven. Phylogenetic path analysis integrates phylogenetic generalized least
squares (PGLS) with the d-separation method for path analysis (140) to permit evaluation of
complicated causal models while accounting for relatedness among species with shared
evolutionary history (139). We conducted all phylogenetic path analyses using the R package
phylopath (141).

We compared a model in which environmental variables directly impacted speciation rate
(direct), a model in which environmental variables indirectly impacted speciation rate via their
impact on an intermediate variable - standing species richness (indirect), a model in which
environmental variables had both direct and indirect effects (both), and a null model with no
associations. We compared models using the C-statistic information criterion corrected for small
sample sizes (CICc). We then evaluated the importance of each causal path in the best model
using the standardized regression coefficient and its standard error.
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Supplementary Text: Additional Results

1. Nucleotide sequence data

1.1 Sequence data guality assessment

Statistics summarizing data recovery across loci are presented in Tables S44 (T400F) and
S45 (HGAPF), and across samples in Tables S46 (T400F) and S47 (HGAPF). Sequence
assembly required 13,465 cpu hours. We recovered data from 1,713 samples on average (SD =
179) across the T400F alignments and 1,765 samples (SD = 40) across the HGAPF alignments.
T400F alignments averaged 653 bp in length (SD = 106) with 445 variable sites (SD = 115),
whereas HGAPF alignments were 255 bp on average (SD = 58) with 157 variable sites (SD =
46). TA00F alignments were missing data from 21% of alignment sites (SD = 3%), whereas
HGAPF alignments were missing data from only 2% (SD = 0.7%). The proportion of GC sites
averaged 0.39 with a standard deviation of 0.05 in both datasets.

The number of loci recovered across samples averaged 2,087 (SD = 405) for the T400F
and 1,891 (SD = 370 for the HGAPF dataset). Sequence read depths for sequences retained in the
alignments averaged 262 (SD = 290) for the T400F and 271 (SD = 298) for the HGAPF dataset.
Individuals varied widely in missing data (T400F mean = 481.689 sites, SD = 344,026; HGAPF
mean = 62,134 sites, SD = 108,249) and in the number of private alleles at variable sites (T400F
mean = 220, SD = 309; HGAPF mean = 48, SD = 72).

As anticipated, data recovery was unsuccessful from a larger number of loci in toe pads
from dried study skins (T400F: mean = 600, SD = 656; HFAPF: mean = 465, SD = 590), on
average, than frozen tissue samples (T400F: mean =286 , SD = 382; HFAPF: mean = 196, SD =
351; Fig. S12a; T400F t =4.9, p < 0.01; HGAPF t = 4.7, P < 0.01). For loci that were recovered,
the toe pad sequences contained more missing sites (T400F: mean = 910141, SD = 353932,
HFAPF: mean = 142346, SD = 157580) than tissue sequences (T400F: mean = 456976, SD =
326829; HFAPF: mean = 57507, SD = 102867; Fig. S12b; T400F t = 12.9, P < 0.01; HGAPF t =
5.5, P <0.01).

1.2 Data recovery across genomic regions

We recovered data from 2,172 loci that mapped to Zebra Finch autosomes, 165 mapping
to the Z chromosome, and 47 that mapped to unmapped scaffolds. 132 mapped to coding regions
annotated in the Zebra Finch, whereas the remaining 2,252 loci mapped to areas not annotated as
coding (hereafter “non-coding”).

2. Phylogeny

2.1 Selection of nucleotide substitution models

The GTRGAMMA was the best-fitting model across 87 of the subset of 100 alignments
examined (Table S12) and was used for subsequent analyses.
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2.2 Overview of ExaML species tree analyses

Tree inference using ExaML required 443,559 cpu hours. Five samples were clearly mis-
identified or heavily contaminated based on placements across all trees and subsequent
inspection of alignments and were removed from further analyses (Table S13).

2.3 Sequence data filtering strategies (HGAPF vs T400F) and impact on tree inference

Average bootstrap support on the T400F complete tree was 94.8 (SD = 15.0, Fig. S13),
and the number of RAXML T400F gene trees consistent with each node averaged 164 (SD = 220,
Fig. S14). The HGAPF tree had average bootstrap support of 91.1 (SD = 19.3, Fig. S15) and an
average of 34 (SD =57, Fig. S16) RAXML HGAPF gene trees contained each node in the
consensus tree. The fact that few gene trees support each node reflects the relative low resolution
of gene trees from alignments from conserved regions with relatively few variable sites. The
HGAPF and T400F trees had very few topological differences (Fig. S1). The shallow clades
visible in the ExaML trees with high concentrations of low bootstrap support (red nodes in Figs.
S13 and S15) represent species with dense intraspecific sampling that was pruned for subsequent
analyses. Isolated extremely long terminal branches generally represent toepads and poor-quality
samples (Table S10) that were omitted for time calibration purposes (see section 3 below). Due
to the increased resolution and support of the more data-inclusive T400F tree, we focus primarily
on that tree for subsequent analyses, presenting analyses of the HGAPF tree only where they are
instructive for confirming or contrasting with the T400F results.

2.4 Variation in trees built from different genomic partitions

The Robinson-Foulds (RF) distance between the T400F ExaML tree of autosomal data
and the complete T400F ExaML tree was 172 (Fig. S17), compared to 658 between the sex-
linked and complete trees (Fig. S18). The RF distance between the T400F ExaML tree of coding
data and the complete T400F ExaML tree was 786 (Fig. S19), compared to 108 between the non-
coding and complete trees (Fig. S20). The greater discrepancy between the complete tree and the
trees from sex-linked and non-coding partitions may be due to the fact those partitions were both
relatively small.

2.5 Comparison of concatenated and coalescent-based species trees

Astral local posterior probabilities, like bootstrap support values for the ExaML trees,
were generally high across nodes (mean = 0.92, SD = 0.21; Figs. S21 and S22). Gene tree
support averaged 149 across nodes (SD = 219) in the Astral tree (Fig. S23), similar to the T400F
ExaML tree and higher than the HGAPF ExaML tree (see section 2.3). The complete Astral tree
showed a high degree of topological discordance with the ExaML tree (Fig. S2). However,
inspection of the tips that differed in position between the two trees revealed that, in the Astral
tree, tips missing from a large number of gene trees were often placed on clearly spurious long
branches outside the clade to which they belong based on current taxonomic classification and
the results of other analyses. Trimming tips missing from more than 250 gene trees removed
most of the spurious long branches and resulted in much higher concordance between the Astral
and ExaML trees (Fig. S3). This level of concordance is impressive given that our dataset
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comprises poorly resolved gene trees with high potential for estimation error, which can be
problematic for Astral (61). This concordance suggests that the topologies obtained with ExaML
are not substantially biased by not accounting for gene tree heterogeneity.

2.6 Heterogeneity in gene tree support across different genomic regions

Loci from across the genome supported the consensus T400F ExaML, HGAPF ExaML,
and T400F Astral topologies (Figs. S24, S25, and S26, respectively). However, there was
considerable variation among gene trees both in the number of consensus nodes that they
contained and in their topologies and branch lengths. Standard deviations in number of
consensus relationships supported across gene trees were 83 for the T400F ExaML tree, 32 for
the HGAPF ExaML tree, and 67 for the T400F Astral tree. Average weighted RF distance
between gene trees was 0.90 (SD = 0.06) for the T400F alignments and 0.98 (SD = 0.03) for the
HGAPF alignments (where the maximum is 1). Sex-linked gene trees supported more nodes in
the ExaML trees (T400F ExaML mean = 217, SD = 109) than autosomal gene trees (T400F
ExaML mean = 128, SD = 77; Fig. S27a; t =-10.3, P < 0.01). Gene trees were more
heterogeneous at autosomal loci, with an average weighted RF distance of 0.91 (SD = 0.06)
versus 0.82 (SD = 0.09) for sex-linked loci (t = 120.37, P < 0.01). Gene trees from coding and
non-coding loci did not differ in the number of consensus tree nodes with which they were
concordant (T400F ExaML coding mean = 144, SD = 83; non-coding mean = 134, SD = 82; Fig.
S27b; t=1.38, P =0.17). Weighted RF distance averaged 0.89 (SD = 0.06) for the coding loci
and 0.90 (SD = 0.06) for non-coding loci.

3. Time calibration

3.1 Comparison of different roots

TreePL time-calibrated trees estimated using either a calibration on the
Passeriformes+Psittaciformes node (Psittacopasseres) or on the more inclusive clade formed by
Cariamiformes, Falconiformes, Psittaciformes and Passeriformes. Both strategies resulted in
highly similar divergence times (Fig. S28), and we therefore focus subsequently on the tree
based on the better-supported Psittacopasseres calibration.

3.2 Impact of removal or inclusion of poor quality samples on time calibration

Visual inspection of the ExaML phylogenies (e.g., Figs. S13 and S15) reveals isolated
long terminal branches, many of which are toe pad samples or poor quality (e.g., rotten) tissue
samples. The inclusion or removal of the tips with long terminal branches had minimal impact on
the T400F phylogeny (Fig. S29), but some HGAPF trees with these tips included had inflated
divergence time estimates for in some parts of the tree, particularly the Tyrannides clade, relative
to the HGAPF trees without these tips and the T400F trees (Fig S30). Because of concerns
regarding the impact of these low-quality samples and their long terminal branches on
divergence times, we investigated their impact more carefully. We conducted a jackknifing
analysis in which we iteratively removed each tip in the ExaML T400F tree, re-estimated a time-
calibrated tree in TreePL, and then compared the branch length distribution to the complete tree
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using K-F distances, which incorporated branch length differences in distance measurements
(142). Removal of a subset of tips, 52 in particular, resulted in trees with large differences from
the complete tree (Fig. S31), and visual inspection of these trees revealed they often exhibited
the inflated crown age for the Tyrannides clade. However, none of the 52 tips that jackknifing
indicated had a major impact on the time-calibrated tree were the toepads or poor-qualiity
samples with long terminal branches. It seems more likely that the result involving an inflated
Tyrannides crown represents a failure of TreePL to appropriately optimize divergence times in
those analyses. However, we still considered it safer to remove the poor-quality samples for
time-calibration purposes, before replacing them in the tree using congruification (see Materials
and Methods). Given that this resulted in a time-calibrated tree without the inflated Tyrannides
crown age, and that all time-calibrated trees with the T400F dataset regardless of the inclusion of
poor-quality samples recovered similar divergence times, it appears that this tree represents the
best estimate of the divergence history of suboscines.

3.3 Uncertainty in species ages resulting from topological and calibration date uncertainty

The combination of bootstrapped alignments and stochastic node ages for
Psittacopasseria resulted in relative narrow 95% intervals except for the deepest nodes (Fig.
S32). Divergence times within eupasseres were constrained by the maximum bound at 47.25 Ma
assumed for the crown age of that clade based on its fossil record.

3.4 Comparison of penalized likelihood and Bayesian approaches to time calibration of family-
level tree

The BEAST maximum clade credibility tree was nearly identical in topology to the tree
estimated using ExaML (Fig. S33). The two exceptions were the placement of Oxyruncidae
(sister to Onychorhynchidae in the primary tree, but sister to Onychorhynchidae+Tityridae in the
BEAST tree) and Sapayoidae (sister to Pittidae in the primary tree, but sister to Calyptomenidae
in the BEAST tree). However, these arrangements involved adjacent, very short branches and
were poorly supported in the BEAST tree. More importantly, the ages of divergence times were
highly similar for shared nodes in the two trees (Fig S34). The confidence intervals from one tree
generally overlapped the point estimates for the other, and relative timing was highly similar
across nodes in the two trees.

3.5 Tree updates

In addition to the trees made available via Zenodo (doi: 10.5281/zenodo.3976115), any
future updates to this phylogeny will be made to a living tree at https://suboscine.openwings.org/.

4. Correspondance with existing classifications and prior phylogenetic
hypotheses

4.1 Paraphyly and classification comparison
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We did not recover paraphyly or polyphyly within currently recognized suboscine
suborders or families. Family stem ages averaged 27.7 Ma (SD = 6.1 Ma; Table S2). We did,
however, recover 35 cases of paraphyly in suboscine genera (Table S14) and 58 cases of
paraphyly within species for which we sampled multiple individuals (Table S15). Most of these
cases were consistently recovered across trees and were well supported by tree support values.
We also found that many species contained intraspecific divergences that were deeper than many
divergences between species. 11.66% of intraspecific divergences were deeper than the median
sister species divergence with the Howard and Moore classification, 11.72% with the Clements
classification, and 12.10% with the IUCN classification (Fig. S35). This diversity within species
was only detectable due to the high level of intraspecific sampling in our dataset.

4.2 Comparison with prior trees

We compared our phylogeny with the prior phylogenetic hypotheses of Jetz and
colleagues (96). Their tree distributions were assembled for all birds by estimating dated trees for
158 subclades and then joining them to a dated backbone phylogeny. 3,330 species lacking
genetic information in their dataset were placed using taxonomic constraints. We compared our
results to consensus trees from their study both containing all species and containing only those
species with genetic data.

Broadly, our tree appears similar to the Jetz et al. trees for suboscines (for example, in the
recovery of three major clades: Eurylaimides, Tyrannides, and Furnariides; Fig. S36), but we
found substantial topological differences at and below the family level (Fig. S37). We conducted
likelihood ratio testing (143), which revealed that the gene trees estimated from our genomic
dataset substantially favored the family-level topologies from our study (both concatenated and
coalescent-based) over the family-level topology of Jetz et al. (Fig. S38). Moreover, with respect
to timing information, the Jetz et al. tree with all tips has some odd rapid divergences at the
crowns of some subclades, which are not observed in our tree and perhaps represent artifacts of
the strategy for adding the un-sampled tips (Fig. S36).

These differences were consequential for downstream analyses. The inverse equal splits
estimator, which is a primary variable used in our diversification analyses (and was also
examined by Jetz et al.) are correlated between our tree and the Jetz tree, but the correlations
were surprisingly weak (all species tree R? = 0.45, P < 0.01; genetic species only tree R? = 0.60,
P < 0.01; Fig. S39). It is noteworthy that the correlation with the all-species tree is weaker than
the genetic-species only tree, despite the fact that the latter is missing many tips that are
important for calculation of the statistic. This suggests that adding species using taxonomic
constraints leads to inferences that are more spurious than leaving those tips out (see also 144).

Moreover, the key result of our study, that speciation rate is highest in lineages occurring
in areas with low species richness, falls apart when the Jetz et al. tree is used. Using their all-tips
tree, the slope of the correlation is still negative (p = -0.13), but it is non-significant (P = 0.21),
and results using the genetic-species only tree are slightly stronger but similarly non-significant
(p=-0.22, P = 0.11). This contrast suggests that a highly resolved and accurate phylogeny of
suboscines was necessary to resolve the drivers of diversification dynamics in this group.

5. Diversity-through-time

19



SCience Submitted Manuscript: Confidential

RAVAAAS

5.1 Lineage-through-time plots and gamma calculations

Lineage-through-time (LTT) plots show a consistent increase in diversity through time in
suboscine birds (Figs. 1, S40). A recent flattening of species accumulation may be due to a
combination of factors including un-sampled intraspecific diversity, the lag-time for species
recognition of current incipient species, unsorted ancestral polymorphism, or residual sequencing
or alignment error. However, it appears to be restricted to the most recent 2 to 2.5 Ma. Gamma
(y) statistics (145) were negative regardless of the classification or tree examined (Table S16),
consistent with a diversification slowdown. However, the gamma statistic is highly affected by
branch lengths near the tips (146), and this appeared to drive the negative values in our case.
When the most recent 2.5 Ma was removed from gamma calculations, values were positive
(Table S16).

5.2 Comparison to simple models of tree-wide diversification

Model comparison using AlCc indicated that constant-rate models provide a better fit
than diversity-dependent models when fit to the primary suboscine tree (birth-death log
Likelihood [LL] = -3626.1, diversity dependent LL = -3658.7, AAICc = 67.18). Pure-birth and
birth-death models had similar fit (pure-birth LL = -3626.0) with pure-birth slightly favored
(AAICc = 2.30) and a low estimated extinction rate in the fitted birth-death model (n = 0.00026).
These relative model fits are reinforced in parametric simulations under the maximum likelihood
parameter values. The LTT plots of simulated constant-rate trees better-matched the empirical
LTT plot than those of diversity-dependent trees (Fig. S41).

5.3 Pulled diversification rate through time

The statistics of Louca and Pennell (18) revealed a pulled diversification rate (rp) that was
low and relatively constant over the history of suboscines (Fig. S4). A recent upswing in the last
~2 Ma, and uncertainty is greater prior to ~20 Ma. This latter result is presumably because
estimation becomes more challenging when there are fewer nodes present to provide information
(18). The initial condition equal to the sampling fraction times the present-day speciation rate
(no) was also quite low (0.00023 [CT=0.00021 - 0.00158] species/Ma), assuming a sampling
fraction of 1). Louca and Pennell indicate that, while changes in pulled diversification rate reflect
shifts in speciation and/or extinction, a relatively constant pulled diversification rate suggests
diversification dynamics have been relatively stable through time. The relative stability of the
pulled diversification rate curve in suboscines, therefore, suggests that the apparent stability of
diversification dynamics in the group is detectable using estimators that maximize discrimination
of alternative diversification histories.

5.4 Episodic birth-death models

Diversification rates estimated using both TreePar (Figs. S42, S43) and TESS (Figs. 2a,
S44-545) models showed relatively constant speciation rates through time. Both captured an
apparent drop in speciation rates in the last 2 Ma that seems to correspond to the halt in lineage
accumulation observed in LTT plots. Likelihood ratio tests conducted in TreePar suggest this
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recent shift is the only significant shift based on model comparison. The addition of more shifts,
earlier in the history of suboscines, did not lead to model improvement (Table S17).

5.5 Diversification through time accounting for branch-specific rate heterogeneity

We identified branch-specific variation in diversification rates corresponding to discrete
shifts in rate regimes across the tree using a series of model-based methods (see results in section
7 below). To identify whether trends in diversification-through-time across suboscines resembled
those from the above analyses after accounting for branch-specific shifts, we summarized
diversification-through-time from the posterior distribution of branch-specific rates from BAMM
(Fig. S46). This revealed relatively constant speciation through time (concordant with our results
from simpler models), or perhaps a small peak in speciation around 10 Ma, but not an early burst
in diversification or a diversity-dependent pattern.

5.6 Family-specific investigation of diversification through time

To determine whether the constant diversification observed through time was an
emergent feature of the suboscine tree as a whole or also characterized lineages within
suboscines on a more granular scale, we examined lineage-through-time plots, gamma statistics,
the fit of simple diversification models, and the pulled diversification rate (18) for each family
containing at least 20 species (n = 10). These demonstrated some support for heterogeneous
diversification curves among families. Family lineage-through time plots showed a mixture of
relatively straight (e.g., Furnariidae, see also 147), variously asymptotic (e.g., Thamnophilidae),
and even upturned (Rhinocryptidae) shapes (Fig. S5). Gamma values were negative for most
families (Table S3), although this appeared to be again driven by the recent decline in lineage
accumulation; removing the last 2.5 Ma of evolution resulted in only Thamnophilidae exhibiting
a significant negative gamma. Most families fit a diversity-dependent model better than a birth-
death model (Table S4), but this also may have been driven by the recent decline in lineage
accumulation. Parametric simulations suggested constant-rate birth-death models could produce
lineage accumulation curves quite similar to the real data for most families (Fig. S6). Finally,
estimates of the pulled diversification rate (18) through time revealed some heterogeneity in
diversification histories across families (Fig. S7). Overall, these analyses reveal some evidence
for heterogeneity in lineage accumulation across suboscine families, but the degree to which
these reflect deterministic versus stochastic processes warrants further scrutiny.

6. Tip-specific branching pattern estimators

6.1 Inverse equal-splits estimator (ES)

The inverse equal splits speciation estimator averaged 0.23 (SD = 0.13) across all tips
with the T400F ExaML tree and Howard and Moore classification. The average across all
branches (including internal branches) was 0.32 (SD = 0.27). ES was highest in regions of the
tree with short internal branches such as within, and especially near the crowns of, some of the
diverse subclades of suboscines. ES was, predictably, lower when more lumped classifications
were examined, but relative ES values across tips were similar among alternative trees and
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classifications (Fig. S47). A few areas in the complete Astral tree with ExaML branch lengths
had highly elevated ES values, likely because topological errors in the Astral tree produced very
short internal branches in ExaML when it was contrained to the Astral topology. Geographic
patterns of ES were similar across trees and classifications (Fig. S48) and (as with other
diversification metrics) were similar with and without weighting values based on the inverse of
species range size (Fig. S49). There was no significant variation in ES between the Old or New
World (Table S18), between the Nearctic and Neotropical regions (Table S19), or across
absolute latitudes (Table S20) based on our FISSE-like and ESsim-like tests. However, some
tests of differences in ES between the Old World and New World were nearly significant, and
visual inspection of the maps of average ES values suggests speciation rates are higher in the
New World, and especially North America (Fig. S38). This pattern is robust to maps using
different trees and classifications. Moreover, BiSSE found evidence of higher speciation rate in
the New World than Old World (Ao = 0.168, A1 = 0.080, P < 0.01) and in the Nearctic than
Neotropics (Ao = 0.553, A1 = 0.123, P < 0.01). QuaSSE also found that a model with a linear
association between latitude and speciation rates fit better than a constant association (I.m. = 1.96
x 10, P < 0.01). Although they are sensitive to false positives, BiSSE and QuaSSE can also be
more powerful than simulation-based tests using summary metrics of branching patterns (94),
and these positive results may reflect real, subtle geographic differences: speciation rates may be
lower in the Old World than the New World, and somewhat higher in temperate North America
than the Neotropics. Within the Neotropics, we did detect differences in ES among sub-regions
(Table S21), recapitulating patterns evident in the maps. The West Indies, for example, had
higher ES than many other Neotropical regions, and the Andes, Patagonia, and “Dry Diagonal”
(Caatinga/Cerrado/Chaco/Pampa region) had higher rates than the Atlantic Forest.

6.2 Average node height (NH)

Average node height, which measures the average depth of the diversification events
subtending species, averaged 17.7 (SD = 5.57) across all tips with the T400F ExaML tree and
Howard and Moore classification. NH was highest in regions of the tree with longer branches
toward the present, and lowest in younger clades (Fig. S50). Relative patterns of NH were
similar across tips whether mean, median, or log mean NH was examined (Fig. S51). NH was
greater in the Neotropics than the Nearctic region based on FISSE analyses with all trees and
classifications examined (Tables S22, S23). It did not differ between the New World and Old
World (Tables S24, S25), although the maps show perhaps the greatest average NH values in the
Old World areas (Figs. S52, S53). Failure to recover differences between the New and Old
World may stem from the small sample of suboscine species distributed in the Old World. NH
also did not differ significantly with absolute latitude (Tables S26, S27). Among Neotropical
regions, there were fewer differences than with ES, but species did average older in the Amazon
than the Dry Diagonal, and in the Atlantic Forest than in Central America (Table S28).

6.3 Terminal branch length (TB)

Average node height, which measures the average depth of the diversification events
subtending species, averaged 4.11 (SD = 3.24) across all tips with the T400F ExaML tree and
Howard and Moore classification. As with NH, TB was highest in regions of the tree with longer
branches toward the present, and lowest in younger clades (Fig. S54). TB was greater in the
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Neotropics than the Nearctic region based on FISSE analyses with all trees and classifications
examined (Table S29). It did not differ between the New World and Old World (Table S30, Fig.
S55) or with absolute latitude (Table S31). As with NH, there were few significant differences
among Neotropical regions in TB, but species did average older in the Amazon and Atlantic
Forest than in Central America (Table S32).

6.4 Substitution rate (SR)

Total root-to-tip substitutions (SR) averaged 0.082 (SD = 0.009) expected changes per
site across all tips with the T400F ExaML tree and Howard and Moore classification. Correcting
for time, this is an average of 0.0018 (SD = 0.0002) changes per site per Ma. Across branches,
including internal branches, SR averaged 0.002 (SD = 0.000; Fig. S56). SR did not vary
significantly with region or latitude (Tables S33-S35), although the maps suggest that the
average value tends to be higher in the Old World (Fig. S57). There were also no significant
differences in SR among sub-regions within the Neotopics (Table S36).

7. Model-based estimates of diversification rate variation

BAMM speciation rates and the inferred best shift configuration for the T400F Howard
and Moore tree were nearly identical across different priors (Figs. S58). No shifts were inferred
running BAMM with only the prior information. The credible shift set from the BAMM run with
a prior of 100 expected shifts (hereafter the focal run) included 1183 distinct shifts, the 9 most
probable shown in Fig. S59. BAMM runs on different trees and classifications were qualitatively
similar to those from the Howard and Moore T400F tree, although the shifts were positioned on
slightly different branches in some cases, some runs had up to 3 additional shifts, and one (the 2
Ma time threshold) was missing the shift leading to the Pipridae radiation (Fig. S60). BAMM
speciation rates for the terminal nodes were correlated with the inverse equal-splits estimator
based on simple linear regression (Table S37, Fig. S61). Patterns of BAMM speciation rate
variation across the globe were also qualitatively similar to those of ES, with higher rates in the
New World and especially North America (Fig. S62).

Medusa inferred a qualitatively similar combination of rate shifts to BAMM (Fig. S63).
However, the positions of some of the shifts differed slightly, the rate shift subtending
Thamnophilidae was missing, and a shift from the ancestral regime to a slower regime was
present for the Eurylaimides. Despite these differences and the time-constant speciation rates
within regimes for Medusa, variation in speciation rates across the edges leading to each species
was correlated with variation in the tip speciation rates from BAMM as well as ES (Table S37,
Fig. S61). Medusa speciation rate variation across the globe also mirrored BAMM speciation
rates and ES (Fig. S62).

The inferred number of shifts from RevBayes for the finite-rate-category birth-death-shift
(FRCBDS) process were 32, 85, and 2,506 (priors of 1, 10, and 100 on expected numbers of
shifts), and 69, 932, 1,256 for the same three priors with the conditional birth-death-shift (CBDS)
process (Fig. S64). RevBayes does not estimate speciation rates at the tips, but rather at internal
nodes. We used the speciation rate at the node subtending each tip and its sister for comparison
purposes with other, tip-specific metrics of speciation rate. RevBayes speciation rates using both
the finite-rate-category birth-death-shift (FRCBDS) process and conditional birth-death-shift
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(CBDS) process were correlated with the BAMM speciation rates, Medusa speciation rates, and
ES (Table S37, Fig. S61). Geographic patterns in both sets of RevBayes speciation rates were
also qualitatively similar to those from ES, BAMM, and Medusa (Fig. S62).

Results from both MSBD (Fig. S65) and ClaDS (Fig. S66) were generally concordant
with those of BAMM, Medusa, and both RevBayes models. Tip speciation rates inferred under
both MSBD and CLaDS were significantly correlated with those from the previously
implemented models (Table S37, Fig. S61). Like BAMM, Medusa, and RevBayes, inferred
diversification dynamics in the MSBD model were generally organized into either very high or
very low rates (Fig S65), resulting in low variance in the tip speciation rate metrics. Unlike those
models and more similar to ES, ClaDS diversification rates were highly variable across tips (Fig.
S66). Geographic patterns in both MSBD and ClaDS speciation rates were similar to those from
other methods (Fig. S62).

We treat the results of these models as supplemental to ES for the purposes of this study.
ES is an estimator of present-day speciation rates. Unlike all other methods except ClaDS, ES
captures fine variation in diversification dynamics across tips (Fig. S67). ES is also useful in that
efficient statistical tests for associations with tip variables have been developed and evaluated,
and these tests have high power and low false discovery rates (94, 133). We therefore focus on
the ES results and treat other speciation rate estimates as supplementary.

8. Historical biogeographic modelling

Area assignments combined with dispersal-extinction-cladogenesis (DEC) modelling
indicated that, as expected, the Old World suboscine species comprise a single, deep clade (the
Eurylaimides) with a deep history in that region. Based on biogeographic stochastic models,
temperate North American species represent just 15-20 (mean = 17.8, SD = 1.3) small and young
groups of tropical origin (all <6.3 Ma in age), primarily within the Tyrannidae (Fig. S8). There
were even fewer colonizations of Neotropics from the Nearctic (range = 4-9, mean = 6.4, SD =
1.2). Historical biogeographic modeling using more finely partitioned regions (see Fig. S11)
failed to optimize, potentially due to the high rate of transitions between areas (e.g. the Amazon
and the Dry Diagonal).

9. Evolution-environment associations and sensitivity tests

9.1 Tip rate correlation tests versus species richness and environment

The results of all tests of speciation rate (ES), species age (TB and NH), and species
richness versus species richness, geography, and environment are provided in Table S5.
Significant and highly significant results are highlighted. The clear pattern that emerges is that
species richness is associated with many geographical and environmental variables, but
speciation rate is not. The only strong association (P < 0.01) recovered involving speciation rate
is with suboscine species richness.

9.2 Disentangling environmental stability versus habitat age
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Species richness is associated with a suite of environmental variables. In general, lineages
with high overlap with other species occur at low latitudes, have large ranges, have short
migratory distances, and live in environments with high temperatures, high precipitation, low
seasonality, and greater stability in temperature and precipitation through geological time (Table
S5). Given the high degree of autocorrelation between these geographic and environmental
variables, identifying the primary driver of species overlap is not straightforward. Richness may
be determined by multiple variables, or by variables for which appropriate data were unavailable
for analysis. In particular, the age of different habitats or environments might vary considerably
(e.g., 148), and this variation might be a critical predictor of species richness (149). High-
resolution spatial data on habitat age are lacking. However, our climatic stability metrics
comparing present-day temperature and precipitation with reconstructions from prior periods
may approach a reasonable proxy for the age of the habitats in those areas. It’s worth noting that
habitat age also interacts with the colonization history of those habitats (see section 7 above),
such that richness might be best predicted by the younger of the two quantities: age of habitat in
an area and age of colonization.

9.3 In-depth investigation of elevation

Despite the lack of a significant association between ES and elevation, there appears to
be moderately elevated ES in the Andes (particularly central and southern Andes) relative to the
Amazon Basin and other lowland areas. We investigated this further by restricting the elevation
analysis to Neotropical (including South Temperate) species. However, even this analysis
produced a non-significant association (p = 0.191, P = 0.098). It appears that, although there may
be a tendency for elevated average speciation rates in the mountains and the central and southern
Andes in particular, it is not as large an effect as other associations, such as that with species
richness.

9.4 Inclusion of New World only versus all suboscines

Old World suboscines are represented by only a small sample size of tips (n = 49
species), and exhibit a distinct diversification history that may be associated with their
coexistence with large radiations of lineages in the other major subdivision of passerine birds,
the oscines or suborder Passeri (150). As a result, we focused most comparative analyses on
dynamics within the more diverse New World assemblage. Although weaker than in all New
World suboscines, the association between speciation rate and suboscine species richness was
observed examining only Neotropical suboscines (p = -0.228, P = 0.014), but not all suboscines
worldwide (p = -0.147, P = 0.098). However, there was a borderline significant association in all
suboscines worldwide when richness was based on all passerines (p =-0.173, P = 0.048) or all
birds (p =-0.179, P = 0.045), rather than just suboscines. This suggests that speciation rates in
Old World suboscines are similarly tied to species richness, although the assemblage of species
most relevant for these dynamics may be broader taxonomically than in the New World.

9.5 Phylogenetic uncertainty
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We recovered a significant association between speciation rate and species richness in all
100 bootstrap trees (p ranged from -0.278 to -0.258, P value from 0.001 to 0.005). This suggests
our result is robust to phylogenetic uncertainty.

9.6 Branch length estimation error

Bias in terminal branch lengths, often due to variation in taxonomic practices among
clades or regions, is a perennial concern in studies of diversification dynamics (/57). It is
possible, however, to interrogate to some degree whether branch lengths reflect the biological
processes of interest and diversification estimates are robust to these issues. SSE methods,
examined below (section 9.11), model the association between a variable of interest and
speciation rates throughout the tree (not weighted towards the tips) and should be more robust to
errors in terminal branches. In addition, we used sensitivity tests and an analysis of non-
ultrametric penultimate branch lengths to evaluate the impact of terminal branch length bias.

We used two strategies for sensitivity testing. In the first, we uniformly shortened or
lengthened all terminal branches on the tree the same amount in order to assess the impact of
widespread error in terminal branch lengths on results. In the second strategy, we assessed the
impact of variation in branch length estimation error across the tree by retaining long terminal
branches from toe pad samples (n=124), which were non-randomly distributed across the tree.
After time calibrating these trees again with TreePL, we examined their similarity to our primary
tree and the impact on our key result (the correlation between the equal splits estimator and
species richness). Relative ES values between these treatments and our primary tree are plotted
in Fig. S68 and the results of ES-sim tests with these new branch lengths in Table S38. We found
that both widespread and isolated adjustment to terminal branch lengths had minimal impact —
relative branching rate estimates were highly correlated with those from the original tree, and
correlations with species richness were similar across both types of treatments.

We also conducted an analysis of penultimate branch lengths subtending sister species in
our non-time-calibrated tree (n=408). These penultimate branches should not be impacted by
sequencing errors, sample quality, or polymorphisms sorting within one species. We evaluated
whether sister species pairs occurring in species-rich areas (based on the average richness in
which the two occur) had longer penultimate branches than those occurring in species-poor
areas. If the long terminal branches observed in tropical species are spurious due to the issues
mentioned above and there is no biological signal of reduced speciation in these regions, we
would expect no relationship. However, we observe a highly significant positive association
between species richness and penultimate branch lengths (R? = 0.04, P = 0.002; Fig. S69). The
best explanation for this pattern is lower recent diversification in those regions. Overall these
results indicate that the observed speciation rate — species richness association is not driven by
terminal branch length bias.

9.7 Alternative taxonomic treatments

We evaluated the impact of taxonomic classification (e.g., the degree to which species
were “split” or “lumped”) by comparing results using the three classifications for which it was
possible to assemble species distributional data: the primary classification (AOS + Howard and
Moore), the AOS + Clements classification, and the IUCN/Birdlife classification. As with the
primary (AOS + Howard and Moore) classification, negative associations between species
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richness and recent speciation rates were observed using both the AOS + Clements (p =-0.247,
P =0.005) and IUCN (p =-0.229, P = 0.009) classifications.

9.8 The impact of spatial autocorrelation in species range overlaps

Spatial autocorrelation is a pervasive issue with species distributional data (152). Spatial
autocorrelation in, for example, species richness might bias downstream analyses, particularly if
low resolution of species distributional boundaries prevails in some regions (e.g., less well-
studied Neotropical areas) or if the geography of species ranges tends to elevate estimates of
range overlap (e.g., narrow elevational ranges in Andean birds). If these areas tend to have
higher or lower diversification metrics, associations may reflect artifacts rather than real
relationships. To evaluate this possibility, we conducted a permutation test in which we
evaluated whether the correlation structure of species overlap values was likely to produce
associations with speciation rate (a key result of our study) by chance. We randomly permuted
speciation rate values across all suboscine species and assessed whether our statistical test for
associations with continuous variables, ESsim (94), recovered a significant association with
speciation rate. We conducted 1000 permutations. None of the 1000 permutations of speciation
rate with range overlap metrics recovered a correlation (p) as strong or stronger than that
observed in the real data. This indicates that the observed association is robust to the impact of
spatial autocorrelation in species richness resulting from spatial biases in the resolution or shape
of species distributions.

9.9 Consistent results within subclades and smaller geographic regions

The negative association between species richness and speciation rates was not driven by
a single geographic region. Although subsetting the dataset to narrower geographic regions (see
Fig. S11) resulted in reduced power to detect associations, most regions still showed negative
associations between the two variables, and these were significant in the Amazonian,
Neotropical, and Dry Diagonal regions (Table S39, Fig. S70). Similarly, families within
suboscines generally exhibited a negative species richness/speciation rate association, which was
significant in the large Tyrannidae family (Table S39, Fig. S71).

9.10. Results using alternative speciation rates

Although we focus on speciation rates estimated with ES, we did examine whether a key
result, the association between speciation rate and species richness, is evident using alternative
branch-specific estimates of speciation rates. We used a simulation-based test similar to ESsim in
which trait values (species richness) were randomly simulated across the phylogeny and
associations with the estimated speciation rates at tips were examined. Aside from ES, only
ClaDS recovered a significant association between speciation rate and species richness (Table
S40). As with ES, ClaDS speciation rates were negatively associated with species richness. It is
perhaps not surprising that other speciation rate estimates did not exhibit significant associations
due to the low variance in tip-specific speciation rates from those methods.

9.11 State-dependent speciation and extinction (SSE) modeling
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Based on model comparison using QuaSSE, a model in which speciation rate varied with
the species overlap of a lineage fit the suboscine data better than a model with no trait-associated
rate variation or a model in which only extinction rate varied with overlap (Table S7). A model
in which both speciation and extinction rates varied with species overlap was only slightly less
favored than the one with just trait-associated speciation rate variation. Both speciation and
extinction were inversely related with species overlap, although MLE extinction rates were low
across observed trait values (Fig. S72). This supports the ESsim results that found a negative
association between speciation rates and species richness. Although variable extinction rates are
notoriously difficult to measure from phylogenies of extant species only (153), the QuaSSE
results also provide at least preliminary evidence that elevated extinction rates characterize areas
with low richness and potentially harsh environments. Several prior studies have indicated that
latitudinal gradients exist in extinction rates and may be responsible for reduced species richness
at high latitudes (2, 22, 29, 154-156).

Despite their limited power, HISSE models also generally favored models with trait-
dependent diversification, depending on the threshold used to delimit species-rich versus species-
poor. At thresholds representing the 50, 60, 70, and 80 percent quantiles, the trait-dependent
speciation model (HiSSE) was favored over all other models (Fig. S9). When the threshold is set
to lower quantiles, the HISSE model involving an association between speciation rate and both
species richness and a hidden variable was generally favored. This result suggests that when the
threshold is low such that more than half of the lineages are treated as occurring in species-rich
areas (trait=1), speciation rate variation within that group of lineages cannot be explained simply
by species richness but requires an additional explanatory variable. This may be because, when
the category of species-rich lineages is more inclusive, they represent lineages in distinct areas
(e.g., Amazon, Andes, Central America, Caribbean) subject to different evolutionary dynamics.

9.12 Extinction or incomplete sampling

Although our key results are evident using methods that explicitly model both trait-
associated and independent extinction (QuaSSE, HiSSE), it might be argued that even SSE
methods are insufficient to capture extinction dynamics in trees of extant taxa only. For
inadequate modeling of extinction to drive our result, our models would have had to fail to
capture very high rates of extinction in areas of high species richness (thereby inferring low
speciation rates there). It seems highly unlikely that extinction rates are substantially higher in
species-rich regions, both based on existing theory that species are more ephemeral at high
latitudes (2, 22, 29, 154-156) and on our QuaSSE results indicating extinction rates were lower
in species-rich regions.

We conducted further evaluation using a sensitivity analysis to examine the level of
extinction that would be required to obscure key results. This also serves as an evaluation of
incomplete sampling, as missing species missing due to extinction or lack of sampling produce
the same effects. We modeled extinction three different ways. First, we modeled random
extinction across the tree by pruning 20%, 40%, 60%, or 80% of the tips. Each extinction
treatment was simulated 100 times. Second, we modeled non-random extinction across
taxonomic groups. We removed tips from each family based on a proportion sampled from a
truncated normal distribution with SD = 0.1 and mean of 0.2, 0.4, 0.6, or 0.8. Each treatment
(mean value for the distribution) was sampled 100 times. Third, since small range size might
increase extinction probability, we modeled non-random extinction with extinction probability
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based on the inverse of relative range size. Again, we removed 20%, 40%, 60%, or 80% of tips
and conducted each treatment 100 times. We then tested whether our major result (the negative
association between speciation rate and species richness) was still recovered. We found that our
major result was robust to the loss of substantial diversity, both randomly and non-randomly
across the tree (Table S6). Across all three strategies for modeling extinction, the major result
was still evident in all trials at 80% sampling, nearly all trials at 60% and 40% sampling, and still
present in roughly half of trials with only 20% of lineages retained (247 of 1,237 species). Our
results are robust to simulated extinction, suggesting that severe and extremely geographically
biased (toward the tropics) extinction would be needed to yield a spurious result.

9.13 Assumptions about the evolution of species richness

Our SSE tests involving species overlap assume that the species richness experienced by
a lineage evolves in a way that is adequately modeled by a Brownian process along branches of
the tree. This is an unconventional way to think about species richness. This approximation is
intuitively reasonable in that lineages will tend to occur in regions in which their ancestor
occurred, which is likely to harbor similar species richness over that interval. However, if
cladogenesis is primarily a result of allopatric speciation, it may be that the two daughter
lineages sometimes inherit rather different species richness values. Unfortunately, QuaSSE’s trait
modeling machinery does not permit incorporation of these sorts of jumps. However, we used a
parametric bootstrapping test to assess whether Brownian motion is a reasonable approximation
of change in species richness across the suboscine phylogeny. We fit Brownian motion to the
real data, and then compared this to the fit of 1000 trait datasets simulated across the suboscine
tree under Brownian motion. We found the real data were indistinguishable from Brownian
motion (P = 0.992). Visualizing a Brownian reconstruction of species richness across the
suboscine tree further reveals that lineages with low or high species richness tend to be clustered
in particular clades (see Fig. S73), such that inference of ancestral values is more straightforward
than it would be were there rapid shifts in richness among close relatives. This suggests that,
despite the potential for rapid shifts in species richness at speciation events, change in species
richness across suboscine lineages is adequately modeled using a Brownian process.

9.14 Range size and speciation rate

Particularly under geographic speciation scenarios, it is possible that quickly speciation
lineages will have more subdivided ranges and that these smaller ranges will in turn lead to less
overlap with other species. If this is the case, small range size might drive a negative association
between speciation rate and species overlap. However, we do not find elevated speciation rates in
small-ranged species (rho =-0.12, P = 0.27). We further conducted a multi-predictor test using
range size and species richness. Multi-predictor tests are not possible in the ESsim framework, so
we used PGLS. It turns out the association between species richness and speciation rate is only
borderline significant (estimate = 1.13 x 10, t = -1.93, P = 0.05). Thus, range size explains part
of the effect of species richness. However, a model with species richness as the predictor had a
much higher model weight (0.37) than one with range size (0.19; Table S41). Given the much
tighter association between species richness and speciation rate, it is clear that species richness is
important over-and-above the subdividing impact of speciation on species ranges.
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9.15 Sister clade comparisons

Given widespread concerns with diversification modeling (18, 110, 137), we also
examined our key result using a classic sister group comparison. Sister group comparisons are a
largely model-free approach to comparing diversity using phylogenetic trees. To identify sister
clades, we examined a comprehensive set of thresholds between low and high species richness.
For many of the thresholds, we had dozens of sister group comparisons (Fig. S10a). We used a
sign test to evaluate whether clade diversity was associated with species richness. The
association was supported at moderate and high threshold values (Fig. S10b). Thus, the relatively
model-free sister group comparisons generally support our key result — the negative association
between speciation and species richness.

9.16 Phylogenetic path analysis

Phylogenetic path analysis comparing four models of causal relationships among
variables favored a model in which environmental variables drove variation in species richness
among lineages, and speciation rates were driven both by species richness and environmental
variation. However, the only predictor of speciation rates with a standardized regression
coefficient with standard errors not overlapping zero was species richness. P-values for the c-
statistic were zero in all models (Table S42), which would normally indicate rejection of all of
the models. However, an examination of individual p-values for pairwise relationships among
variables suggests this result is due to autocorrelation among the parent environmental variables.
This lack of conditional independence in the environmental variables is trivial because we are
not interested in the unique contributions of individual environmental variables, but rather their
overall impact. When the environmental variables were collapsed into a single variable (PC1 of a
principal component analysis) in the indirect model, the P value of the c-statistic was not
significant (P = 0.208), indicating good model fit.
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Fig. S1. Cophylogenetic plot of the T400F (left) and HGAPF (right) ExaML topologies showing
widespread concordance (the prevalence of horizontal lines) and limited discordance (the

isolated crossing lines)
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Fig. S3. Cophylogenetic plot of the T400F ExaML (left) and Astral topologies (right) showing
concordance after dropping tips missing from >250 gene trees
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Fig. S4. Best fit (black lines) and confidence intervals based on bootstrap replicates (gray
polygons) of pulled diversification rate (rp) shows relatively constant diversification over the past
30 Ma.
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Fig. S5. Lineage through time (LTT) plot of all suboscine family-level clades with more than 20
species
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Fig. S6. For each suboscine family-level clade with more than 20 species, the lineage through
time (LTT) plot (black lines) compared to 1000 simulations (gray lines) based on maximum
likelihood parameter estimates under a birth-death model (left panel) and a diversity-dependent
model (right panel)
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Fig. S7. Best fit (black lines) and confidence intervals based on boostrap replicates (gray
polygons) of pulled diversification rate of Louca and Pennell (18) shows relatively constant
diversification over the past 10 Ma in most suboscine families, with some heterogeneity. Many
have a recent upswing in rate, whereas uncertainty becomes greater earlier in each clade when
there are few diversification events to provide information
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Fig. S8. A map of present (tip label colors) and ancestral (pie charts at nodes) geographic areas
based on DEC modelling.
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Fig. S9. Plot showing support for alternative models based on analysis with HiSSE (thresholds represent
what percentage of tips fall in the species-rich category when converted to a binary trait)
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Fig. S10. The results of sister clade comparisons attempting different thresholds to discretize species
richness into low versus high diversity. For each threshold, sister groups were identified in which all taxa
for one clade had one state and all taxa for the sister clade had the other state. (A) The number of
comparisons of each type per threshold. (B) The results of sign tests at each threshold showing the p-
value on a log scale, where values above the p-value=1 line show where there was evidence that clades
from high diversity regions had more species than their sister groups and values below the p-value=1 line
show were there was evidence that clades from low diversity regions had more species than their sister
groups. The dotted lines show a p-value of 0.05; the dashed lines show this after a Bonferroni correction
for the number of distinct thresholds tried.
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Fig. S11. A map showing the extent of the Neotropics as defined for this study. Colored
polygons represent the different regions used for the more subdivided BioGeoBEARS analyses
and in regional comparisons of diversification statistics. Regions are: West Indies (W1I; red),
Central America/Chocé (CA; magenta), Andes (AN; green), Amazon (AM; yellow), Dry
Triangle (DT; light blue), Atlantic Forest (AF; dark blue), and Patagonia (PA; turquoise).
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Fig. S12. Comparison of dried toe pad and frozen tissue samples in the number of loci recovered
(a) and the average length of sequences across loci for which data were recovered (b).
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Fig. S13. T400F ExaML tree with nodes colored according to bootstrap support
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Fig. S14. T400F ExaML tree with nodes colored according to gene tree support

44



SCience Submitted Manuscript: Confidential

RAVAAAS

e

100
920
80
70
60
50
40
30
20
10

Fig. S15. HGAPF ExaML tree with nodes colored according to bootstrap support
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Fig. S16. HGAPF ExaML tree with nodes colored according to gene tree support
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Fig. S17. Cophylogenetic plot of complete (left) versus autosomal (right) T400F ExaML trees
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Fig. S18. Cophylogenetic plot of the complete (left) versus sex-linked (right) T400F ExaML
trees showing topological concordance
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Fig. S19. Cophylogenetic plot of the complete (left) versus non-coding (right) T400F ExaML
trees showing topological concordance
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Fig. S20. Cophylogenetic plot of the complete (left) versus coding (right) T400F ExaML trees
showing topological concordance
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Fig. S21. T400F Astral tree with nodes colored according to local posterior probabilities and
branch lengths in coalescent units (terminal branches have zero length in Astral results and are
set to the median length of internal branches for visualization)
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Fig. S22. T400F Astral tree with nodes colored according to local posterior probabilities and
branch lengths estimated in ExaML in units of number of expected substitutions
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Fig. S23. T400F Astral tree with ExaML branch lengths and nodes colored according to gene
tree support
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Fig. S24. Manhattan plot of support for T4A00F ExaML tree across T400F gene trees
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Fig. S25. Manhattan plot of support for HGAPF ExaML tree across HGAPF gene trees
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Fig. S26. Manhattan plot of support for T400F Astral tree across T400F gene trees
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Fig. S27. Plots of the number of nodes in the consensus T400F ExaML tree supported by gene
trees from different subsets of the genome
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Fig. S28. Comparison of T400F trees using two alternative root calibrations
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Fig. S29. Comparison of T400F trees with (left) and without (right) poor-quality samples
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Fig. S30. Comparison of HGAPF trees with (left) and without (right) poor-quality samples
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Fig. S31. Plot of K-F distances of each jackknife TreePL tree from the complete TreePL tree.
The samples dropped in the 52 trees that are highly dissimilar from the complete tree (>50 K-F
distance) have no overlap with the poor-quality samples that exhibit extremely long terminal
branch lengths.
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Fig. S32. A phylogeny of suboscine birds showing confidence intervals around node ages.
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Fig S33. Topologies of our primary tree (left) and the BEAST family-level tree (right). Posterior
probability support values are provided for relationships with probability <1.0 in the BEAST analysis.
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Fig. S34. Relative divergence times of nodes subtending suboscine families in our primary tree versus
those estimated using BEAST. The right panel provides a node map. Nodes highlighted in red were not
present in the BEAST tree.
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Fig. S35. A comparison of the depth of intraspecific divergence times versus sister species
divergence times based on the three classifications from taxonomic authorities considered in our
study
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Fig. S36. A comparison of our tree (left), with trees from Jetz et al. (96) using all tips including
those lacking genetic data (middle) and just tips with genetic data (right)
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Fig. S37. Plots showing concordance between our tree (left in both plots) and trees from Jetz et
al. (96) using all tips including those lacking genetic data (right tree in left panel) and just tips
with genetic data (right tree in right panel)
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Fig. S38. Family-level phylogeny of the Tyranni based on the ExaML T400 (A), ASTRAL T400
(B), and Jetz et al. (96) datasets (C). Circles at nodes denote conflicting clades between different
trees. Null distributions and observed t-statistic (dashed red lines) of the likelihood ratio tests
(143) for the comparisons between ExaML T400 and Jetz et al. (D), ASTRAL T400 and Jetz et
al. (E), and ExaML T400 and ASTRAL T400 (F). These analyses were based on the coalescent
histories of 1,665 loci that included all 29 families (including outgroups).

-1000 0
test statistics

68



SCience Submitted Manuscript: Confidential

RAVAAAS

0.0
0.0

-0.5
1
-0.5
1

-1.0
-1.0

-15
1
-15
1

This Study
-2.0

This Study
-2.0

-25

-25

-3.0
-3.0

3.5
o
3.5
o

Jetz et al. (All) Jetz et al. (Genetic Data)

Fig. S39. Plots showing the correlation between speciation rates estimates (ES estimator) in our
tree and trees from Jetz et al. (96) using all tips including those lacking genetic data (left panel)
and just tips with genetic data (right panel)

69



SCience Submitted Manuscript: Confidential

RAYAAAS
—— T400F Howard & Moore (H&M)
—— T400F Clements /=
-| —— T400F IUCN /.
T400F 1 My cutoff ’
8 _| —— T400F 2 My cutoff
ol HGAPF H&M
T400F Astral H&M /
T400F Astral H&M poor samples dropped //
o
o —
—
o .
zZ Lo
O a ‘ - —
— JJ[FH
I
© T |
| [
H —
| | | | |
-40 -30 -20 -10 0

Time
Fig. S40. Lineage through time (LTT) plots of all suboscines for all 6 taxonomies, the HGAPF

tree for Howard and Moore classification, and the Astral tree with and without samples missing
from >250 gene trees dropped for Howard and Moore classification
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Fig. S41. Lineage through time (LTT) plot of all suboscines (black lines) for the Howard and
Moore classification compared to 1000 simulations (gray lines) based on maximum likelihood
parameter estimates under: (a) a pure-birth model, (b) a birth-death model, and (c) a diversity-
dependent model
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Fig. S42. Diversification rate through time analysis using TreePar with intervals of 2 Ma and a

birth-death-shift model as applied to the primary tree of all species and of Neotropical species
only
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Fig. S43. Diversification rate through time analysis using TreePar with intervals of 2 Ma and a
birth-death-shift model as applied to all 6 taxonomies, the HGAPF tree for Howard and Moore
classification, and the Astral tree with and without samples missing from >250 gene trees
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Fig S44. TESS results across different taxonomic classifications
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Fig S45. TESS results with vs. without intraspecific diversity
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rate heterogeneity shows relatively constant speciation through time or possibly a peak around
10 Ma

76



SCience Submitted Manuscript: Confidential

RAYAAAS
T400F data, Howard and Moore (H&M) classification ~ T400F data, Clements classification T400F data, IUCN classification
sourare ) ool aoers ]
«1.20671647 - i -1.23671647 ~ . ~1.23671647 - \ .
s JP N \ et P\ \ bt P\ \
\\ A\
T400F data, duplicates dropped T400F data, 1 My time threshold T400F data, 2 My time threshold

orvians J ul azseser ] : byiiodl | :

] W ek , P |

~3.6180479 h \ 361806479 . ! ~3.6186479 h " t

V
. \“
k%
— — — e —
B ), J
» N
\ \ ‘ N\
3 7 N\
HGAPF data, H&M classification T400F data, Astral tree, H&M classification T400F data, Astral tree, H&M, missing dropped

amonu ] bupwadl | o serm

09710810 \ 1" 02148409 - \\\‘, \ I / y -1.018182 | R

-23325264 . \\ -1.6807860 '} \\ \ f / ~2.308085 | \

~3.6940018 A ~35944130 \ V. -3.597988

B \ | Ay P
\ ft) <
== B \'<
P = — - -

Fig. S47. Log-transformed ES across all branches for all 6 taxonomies, the HGAPF tree for
Howard and Moore classification, and the Astral tree with and without samples missing from
>250 gene trees dropped for Howard and Moore classification
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Fig. S48. Log-transformed ES across space for 3 taxonomies, the HGAPF tree for Howard and
Moore classification, and the Astral tree with and without samples missing from >250 gene trees
dropped for Howard and Moore classification

78



SCience Submitted Manuscript: Confidential

RAVAAAS

Unweighted Weighted

3.0
25
20
15
10
0.5
0o

Fig. S49. Unweighted vs weighted maps of (A) the inverse equal-splits speciation rates: ES, (B)
the terminal branch length: TB, (C) the node depth: ND, and (D) substitution rate: SR
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Fig. S50. Mean NH across the tree tips for all 6 taxonomies, the HGAPF tree for Howard and
Moore classification, and the Astral tree with and without samples missing from >250 gene trees
dropped for Howard and Moore classification
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Fig. S51. Comparison of mean NH, log mean NH, and median NH across tree tips
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Fig. S52. Mean NH across space for 3 taxonomies, the HGAPF tree for Howard and Moore
classification, and the Astral tree with and without samples missing from >250 gene trees
dropped for Howard and Moore classification
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Fig. S53. Comparison of mean NH, log mean NH, and median NH across space
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Fig. S54. Log-transformed TB across the tree tips for all 6 taxonomies, the HGAPF tree for
Howard and Moore classification, and the Astral tree with and without samples missing from
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Fig. S55. Log-transformed TB across space for 3 taxonomies, the HGAPF tree for Howard and
Moore classification, and the Astral tree with and without samples missing from >250 gene trees
dropped for Howard and Moore classification
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Fig. S56. SR across all branches for all 6 taxonomies, the HGAPF tree for Howard and Moore
classification, and the Astral tree with and without samples missing from >250 gene trees
dropped for Howard and Moore classification
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Fig. S57. SR across space for 3 taxonomies, the HGAPF tree for Howard and Moore
classification, and the Astral tree with and without samples missing from >250 gene trees
dropped for Howard and Moore classification
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Fig. S58. Plot of BAMM speciation rates across the phylogeny and the best shift configuration
with priors for expected number of shifts of 1, 10, and 100 and using only the prior information
with no data (no shifts inferred)
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Fig. S59. Plot of the top nine shift conformations and their posterior probabilities (f) from the
BAMM credible shift set for the Howard and Moore classification
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Fig. S60. Plot of BAMM speciation rates across the phylogeny and the best shift configuration
for all 6 taxonomies with the T400F tree and Howard and Moore classification, the HGAPF tree
for the Howard and Moore classification, and the Astral tree with and without samples missing
from >250 gene trees dropped for Howard and Moore classification
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Fig. S61. Regressions comparing speciation rates at tips inferred using ES, BAMM, Medusa,
RevBayes with both FRCBDS and CBDS methods (with prior of 10 expected shifts), MSBD,
and ClaDS.
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Fig. S62. Maps of BAMM, MEDUSA, RevBayes FRCBDS and CBDS (with prior of 10
expected shifts), MSBD, and ClaDS0 speciation rates across the globe.
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Fig. S63. Comparison of BAMM to MEDUSA speciation rates across the phylogeny and the
inferred shift configuration with the T400F tree and Howard and Moore classification

92



SCience Submitted Manuscript: Confidential

AVAAAS

CBDS, prior number of shifts 1 CBDS, prior number of shifts 10 CBDS, prior number of shifts 100

‘

0.240831 0.2451380
0.203680 :’ 0.2124785
0.166529 — £ 0.1798180
o.120378 j k: 0.1471575
0.092227 0.1144870

FRCBDS, prior number of shifts 1 FRCBDS, prior number of shifts 10 FRCBDS, prior number of shifts 100

N

02501070 0.2739540 ‘L,% 0718425 1
02077933 0.2316505 J | S— 0564934
01654795 0.1893650 0411443
01231658 0.1470705 ] = 0257952
00808520 01047760 e | 0.104461

Fig. S64. Plots of RevBayes speciation rates across the phylogeny and the inferred shift
configuration using both the finite-rate-category birth-death-shift (FRCBDS) process and
conditional birth-death-shift (CBDS) process with prior number of expected shifts set at 1, 10,
and 100.
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Fig. S65. MSBD speciation rates across the phylogeny with the T400F tree and Howard and
Moore classification
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Fig. S66. ClaDSO0 speciation rates across the phylogeny with the T400F tree and Howard and
Moore classification. A few branches have very high rates, thus variation is more evident when
log-transformed (right panel)
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estimated using TreePL without removal of the poor-quality samples with long terminal branches
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Fig. S69. The association between log penultimate branch lengths and average species richness
in suboscine species pairs.
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Fig. S70. Plots of the association between species richness and speciation rates for different

regions (statistics are reported in Table S39)
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Fig. S71. Plots of the association between species richness and speciation rates for those families
containing > 50 species (statistics are reported in Table S39)
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Fig. S72. Curves of MLE speciation and extinction rates from two QuaSSE models (L:
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Fig. S73. Brownian reconstruction of species richness across the suboscine tree showing
ancestral estimates
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Table S1. Comparison with prior datasets

Length Tips Total Size
Jarvis et al. (49) 322,150,876 48 15,463,242,048
Current study 1,559,815 1,940 3,026,041,100
Smith and Brown (157) 2,805,378,526
Irissari et al. (158) 1,964,339 100 196,433,900
Simion et al. (159) 401,632 97 116,874,912
Prum et al. (14) 394,457 198 78,102,486

102



SCience Submitted Manuscript: Confidential

RAVAAAS

Table S2. Suboscine family ages in the T400F time-calibrated tree

Family Stem age (Ma) Crown age (Ma)
Furnariidae 18.7 16.8
Rhinocryptidae 335 23.3
Tyrannidae 21.8 16.8
Thamnophilidae 33.8 19.7
Cotingidae 25.3 20.0
Pipridae 26.2 15.2
Pipromorphidae 21.8 19.5
Calyptomenidae 36.5 30.7
Platyrinchidae 22.3 20.2
Dendrocolaptidae 18.7 15.7
Formicariidae 325 23.2
Conopophagidae 33.8 17.7
Eurylaimidae 29.1 25.8
Pittidae 35.9 18.5
Scleruridae 21.3 17.7
Grallariidae 35.2 25.5
Tityridae 24.8 21.2
Melanopareiidae 35.0 12.7
Onychorhynchidae 23.7 19.9
Philepittidae 29.1 20.2
Oxyruncidae 23.7 3.1
Pipritidae 23.3 18.2
Sapayoidae 35.9 NA
Tachurisidae 22.1 NA
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Table S3. Gamma () test statistics without and with trimming of the most recent 2.5 Ma for all
suboscine family-level clades with more than 20 species

Trimmed P
Family Y P Value Trimmed y Value
Furnariidae -7.49 6.83 x 1014 1.20 0.23
Rhinocryptidae -3.33 8.83 x 10* 2.46 0.01
Grallariidae -3.08 2.06 x 1073 -0.11 0.91

Thamnophilidae -8.94 3.85x 101° -3.75 1.76 x 10*
Tyrannidae -7.17 7.35x 1013 -0.61 0.54
Pipromorphidae -4.57 4.86 x 108 1.10 0.27
Tityridae -0.96 0.33 1.31 0.19
Cotingidae -2.14 0.03 -0.71 0.48
Pipridae -1.74 0.08 0.10 0.92
Pittidae -2.24 0.03 0.01 0.99
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Table S4. The results of diversity-dependent (dd) versus constant-rate birth-death (bd) model
comparisons indicate support for diversity dependence in some lineages (highly negative AAICc
values) across family-level clades with more than 20 species

Diversity Constant-rate
dependent log  birth-death log
Family Likelihood Likelihood AAICc
Furnariidae -671.70 -703.15 -60.85
Rhinocryptidae -114.59 -119.04 -6.61
Grallariidae -52.64 -59.11 -10.20
Thamnophilidae -616.72 -654.08 -12.67
Tyrannidae -7124.94 -177.52 -103.13
Pipromorphidae -242.56 -270.34 -53.44
Tityridae -62.47 -63.39 0.86
Cotingidae -150.26 -153.28 -3.78
Pipridae -125.18 -127.16 -1.69
Pittidae -80.85 -84.24 -4.26
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Table S5 Associations between evolutionary dynamics and various predictor variables.

Speciation Rate

Variable Name (ES) Age (TB) Age (NH) Diversity
p P p P p P p P
< richness suboscines -0.247  0.006** 0.194 0.014* 0.177 0.084 NA NA
S richness passerines -0.216  0.017* 0.171 0.020* 0.149 0.126 NA NA
®  richness all birds -0.223  0.021* 0.176 0.022* 0.155 0.105 NA NA
elev.mid 0.187 0.100 -0.122 0.254 -0.122 0.414  -0.077 0.410
elev.max 0.203 0.064 -0.138 0.174 -0.133 0.342  -0.045 0.657
< elev.min 0.133 0.264 -0.079 0.454 -0.086 0.547  -0.108 0.164
% elev.range 0.152 0.212 -0.116 0.286 -0.101 0.428  0.048 0.625
u%) lat.mid 0.162 0.100 -0.114 0.214 -0.111 0.376  -0.582  0.002**
2 latmax 0.115 0.296 -0.063 0.488 -0.087 0.537  -0.399 0.002**
= lat.min 0.061 0.597 -0.030 0.765 -0.035 0.773  -0.288 0.002**
range.area -0.119 0.270 0.107 0.288 0.064 0.645 0.428  0.002**
mig.dist 0.135 0.180 -0.084 0.406 -0.143 0.236  -0.254  0.002**
temp.mean -0.175 0.057 0.102 0.142 0.117 0.222 0318 0.001**
temp.median -0.173  0.049* 0.101 0.152 0.114 0.177 0321 0.001**
temp.var 0.164 0.063 -0.115 0.088 -0.150 0.122  -0.109 0.055
temp.instabl.mean 0.171 0.047* -0.105 0.150 -0.162 0.106  -0.207  0.002**
temp.instabl.median 0.169 0.035* -0.103 0.146 -0.162 0.117 -0.201 0.001**
temp.instab2.mean 0.152 0.079 -0.097 0.155 -0.138 0.150 -0.142  0.019*
temp.instab2.median 0.143 0.093 -0.088 0.191 -0.131 0.149 -0.134  0.025*
temp.seasonality.mean 0.129 0.122 -0.081 0.195 -0.112 0.191 -0.391 0.001**
temp.seasonality.median 0.132 0.118 -0.084 0.193 -0.111 0.200 -0.418 0.001**
temp.seasonality.var 0.116 0.135 -0.084 0.180 -0.136 0.139  -0.051 0.253
temp.season.instabl.mean 0.117 0.140 -0.066 0.239 -0.121 0.171  -0.317 0.001**
temp.season.instabl.median 0.099 0.162 -0.052 0.293 -0.100 0.246  -0.327 0.001**
temp.season.instab2.mean 0.079 0.235 -0.046 0.328 -0.084 0.275 -0.233 0.001**
temp.season.instab2.median 0.066 0.283 -0.033 0.375 -0.078 0.319 -0.228 0.001**
o Max.temp.mean -0.133 0.108 0.074 0.214 0.074 0.291 0.189  0.002**
g max.temp.median -0.130 0.109 0.072 0.246 0.070 0.342 0.187  0.002**
5 Maxtemp.var 0.158 0.066 -0.117 0.114 -0.130 0.181 -0.104 0.069
max.temp.instabl.mean 0.191 0.043* -0.129 0.072 -0.167 0.093  -0.247 0.001**
max.temp.instabl.median 0.190 0.030* -0.128 0.070 -0.169 0.101  -0.243  0.001**
min.temp.mean -0.176  0.048* 0.101 0.161 0.128 0.174  0.347 0.001**
min.temp.median -0.174 0.057 0.100 0.139 0.125 0.172 0357  0.001**
min.temp.var 0.123 0.128 -0.081 0.213 -0.139 0.171  0.000 0.483
min.temp.instabl.mean 0.083 0.219 -0.032 0.403 -0.093 0.224  -0.011 0.427
min.temp.instabl.median 0.085 0.238 -0.033 0.383 -0.093 0.228  -0.009 0.443
precip.mean -0.155 0.080 0.096 0.148 0.131 0.140 0.335  0.001**
precip.median -0.151 0.084 0.091 0.168 0.129 0.158 0.314  0.001**
precip.var -0.075 0.274 0.040 0.363 0.074 0.300 0.199  0.001**
precip.instabl.mean -0.033 0.399 0.006 0.494 0.038 0.397 -0.031 0.331
precip.instabl.median -0.016 0.436 -0.007 0.489 0.022 0.465 -0.108 0.052
precip.instab2.mean -0.039 0.364 0.005 0.494 0.037 0.370  0.017 0.441
precip.instab2.median -0.036 0.383 0.003 0.493 0.033 0.399  -0.026 0.396
precip.seasonality.mean 0.109 0.144 -0.102 0.148 -0.069 0.321  -0.219 0.001**
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precip.seasonality.median 0.098 0.161 -0.095 0.155 -0.062 0.323  -0.176  0.005**
precip.seasonality.variance -0.006 0.496 -0.012 0.452 0.036 0.411  0.063 0.201
precip.season.instabl.mean 0.023 0.424 -0.008 0.462 -0.042 0.388 -0.014 0.458
precip.season.instabl.median 0.057 0.321 -0.029 0.376 -0.077 0.261  -0.082 0.141
precip.season.instab2.mean 0.048 0.352 -0.043 0.316 -0.020 0.441  -0.102 0.092
precip.season.instab2.median 0.046 0.347 -0.032 0.373 -0.033 0419 -0.125 0.037*
precip.wettest.q.mean -0.135 0.106 0.075 0.214 0.109 0.210 0.343  0.001**
precip.wettest.q.median -0.133 0.103 0.072 0.214 0.109 0.217 0.319  0.001**
precip.wettest.q.var -0.060 0.284 0.029 0.369 0.045 0.367 0.298  0.001**

precip.wettest.g.instabl.mean -0.052 0.306 0.022 0.412 0.040 0.407  -0.037 0.319
precip.wettest.q.instabl.median  -0.033 0.377 0.010 0.445 0.022 0.433 -0.114 0.055
precip.wettest.q.instab2.mean -0.083 0.225 0.043 0.352 0.048 0.361  0.126 0.033*
precip.wettest.g.instab2.median  -0.080 0.261 0.041 0.323 0.048 0.363  0.068 0.175

precip.driest.q.mean -0.168  0.046* 0.121 0.097 0.149 0.109 0.241 0.001**
precip.driest.qg.median -0.141 0.082 0.104 0.140 0.124 0.155 0.152  0.009**
precip.driest.g.var -0.125 0.142 0.081 0.186 0.126 0.173 0.193  0.001**
precip.driest.q.instabl.mean -0.075 0.243 0.050 0.312 0.061 0.334 0.234 0.001**
precip.driest.q.instabl.median -0.037 0.355 0.019 0.420 0.030 0.431  0.120 0.050*
precip.driest.q.instab2.mean -0.112 0.156 0.087 0.193 0.090 0.226  0.229  0.002**
precip.driest.q.instab2.median -0.090 0.220 0.075 0.203 0.069 0.301 0.144 0.015*
*P<0.05

** P <0.01
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Table S6. The results of extinction sensitivity tests.

20% 40% 60% 80%
Model conditions removed removed removed removed

Random extinction

Average p -0.27 -0.27 -0.26 -0.22

Proportion significant 1.00 1.00 0.93 0.47
Extinction variable across families

Average p -0.27 -0.26 -0.25 -0.23

Proportion significant 1.00 0.99 0.83 0.52
Extinction variable according to inverse of range size

Average p -0.27 -0.29 -0.31 -0.34

Proportion significant 1.00 1.00 1.00 0.97
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Table S7. QuaSSE model comparison results showing support for models with associations
between species overlap and speciation and extinction rates as well as parameter values
Speciation- and

Speciation- Extinction-

Minimal extinction-
dependence dependence d

ependence

log Likelihood -5016.2 -4979.0 -5016.2 - 4979.0

AIC 10038 9966 10040 9968

Chi-Squared - 74.44 0.02 74.45

Pr(>|Chil) - <2.20x 101 0.90 <2.20x 101

A 0.17 1.16 0.17 1.16

u 0.00 9.41 x 10°® -0.03 -6.34 x 107/

A slope - -0.18 - -0.18

u slope - - 0.00 -2.91 x 1078
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Table S8. Alternate references used for mapping data from low quality samples

Sample

Samples used to produce reference

Acropt_ortnyx_L30027
Acropt_ortnyx_PhAMC1246
Akleto_goeld LSU21212
Akleto_goeld LSU9293

Anaire_alpin_NM34088

Anaire_ferna_CM120730

Anaire_flaviro_CU52375

Anaire_nigrosta_F391921

Anaire_parlus_A12192

Anaire_regide_LSU72421

Attila_cinmeus_K1236

Attila_cinmeus_SB11685
Batara_cinrea_LSU18607
Batara_cinrea_SPML159

Calytur_criata_A494721

Carpod_hopkei_L29961
Carpod_nitdus_A247754

Cliba_erylus_L61296
Cliba_erylus_SB28253

Clytoc_ali_A133422

Coniop_mcilh_K1416
Coniop_mcilh_L78827
Contop_coope_A17527
Contop_viren_L37174
Corapi_alter_LSU28374

Acropt_ortnyx PhAMC1246
Acropt_ortnyx_L30027

Akleto_goeld LSU9293

Akleto_goeld LSU21212

Anaire_parlus_A12192, Anaire_flaviro_CU52375,
Anaire_nigrosta_F391921, Anaire_regide_LSU72421,
Anaire_ferna_CM120730

Anaire_parlus_A12192, Anaire_flaviro_CU52375,
Anaire_alpin_NM34088, Anaire_nigrosta_F391921,
Anaire_regide_LSU72421, Anaire_parlus_A12192
Anaire_parlus_A12192, Anaire_alpin_NM34088,
Anaire_nigrosta_F391921, Anaire_regide_LSU72421,
Anaire_ferna_CM120730

Anaire_parlus_A12192, Anaire_flaviro_CU52375,
Anaire_alpin_NM34088, Anaire_regide LSU72421,
Anaire_ferna_CM120730

Anaire_flaviro_CU52375, Anaire_alpin_NM34088,
Anaire_nigrosta_F391921, Anaire_regide_LSU72421,
Anaire_ferna_CM120730, Anaire_ferna_CM120730
Anaire_parlus_A12192, Anaire_flaviro_CU52375,
Anaire_alpin_NM34088, Anaire_nigrosta_F391921,
Anaire_ferna_CM120730

Attila_cinmeus_SB11685

Attila_cinmeus_K1236

Batara_cinrea_ SPML159

Batara_cinrea_LSU18607

Calytur_criata_A494720, Neopip_cinmom_L42825,
Calytur_criata_A4379, Calytur_criata_A494720,
Calytur_criata_A4379

Carpod_nitdus_A247754

Carpod_nitdus_A247754, Carpod_hopkei_L29961,
Carpod_hopkei_L29961, Carpod_nitdus_A247754
Cliba_erylus_SB28253

Cliba_erylus_L 61296

Clytoc_ali_A133422, Neocta_niger_L2749,
Neocta_niger L2749, Clytoc_ali_A133422
Coniop_mcilh_L78827

Coniop_mcilh_K1416

Contop_viren_L37174

Contop_coope_A17527

Corapi_alter_L28407
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Corvus_coride_ A17778
Corydo_sumnus_L77291

Coryph_ala_L18894
Coryph_ala_S636126

Cymlai_lintus_ GBR163161
Cymlai_lintus_IN1551
Cymlai_lintus_LSU28690

Cymlai_lintus_MZU92809

Dendre_rufula_F389815
Dendre_rufula_ L4562
Dichro_cincta_L10517
Dichro_cincta_LSU6919
Dichro_cincta_MZUB86486
Dryphi_devil_LSU9683
Dryphi_devil MPEG69273
Dysith_leuctus_COP07N0158

Dysith_leuctus_LSU6111
Dysith_leuctus_ YPM139344

Dysith_mental_L33085

Dysith_mental LSU2003

Dysith_mental_LSU22639

Dysith_mental_LSU26463
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Passer_L52749

Pseutom_graueri_F311050, Pseutom_graueri_A764296,
Psaris_dalsia_K25407

Coryph_ala_S636126

Coryph_ala_L18894

Cymlai_lintus_IN1551, Cymlai_lintus_LSU28690,
Cymlai_lintus_ MZU92809

Cymlai_lintus_ GBR163161, Cymlai_lintus_LSU28690,
Cymlai_lintus_MZU92809

Cymlai_lintus_ GBR163161, Cymlai_lintus_IN1551,
Cymlai_lintus_MZU92809

Cymlai_lintus_GBR163161, Cymlai_lintus_IN1551,
Cymlai_lintus_LSU28690

Dendre_rufula_L4562

Dendre_rufula_F389815

Dichro_cincta_LSU6919, Dichro_cincta_MZU86486
Dichro_cincta_L10517, Dichro_cincta_ MZU86486
Dichro_cincta_L10517, Dichro_cincta_LSU6919
Dryphi_devil MPEG69273

Dryphi_devil_LSU9683

Dysith_leuctus_LSU6111, Dysith_leuctus_YPM139344
Dysith_leuctus_COP0O7N0158,

Dysith_leuctus_ YPM139344

Dysith_leuctus_ COP07NO0158, Dysith_leuctus LSU6111
Dysith_mental_ MZUSP85740, Dysith_mental _LSU2003,
Dysith_mental LSU22639, Dysith_mental LSU66338,
Dysith_mental_LSU26463, Dysith_mental _LSU69439,
Dysith_mental LSU69289, Dysith_mental LSU48490,
Dysith_mental_ MZU94637, Dysith_mental_MZU87834
Dysith_mental MZUSP85740, Dysith_mental _LSU22639,
Dysith_mental_LSU66338, Dysith_mental LSU26463,
Dysith_mental _LSU69439, Dysith_mental LSU69289,
Dysith_mental_LSU48490, Dysith_mental _L33085,
Dysith_mental MZU94637, Dysith_mental MzZU87834
Dysith_mental_ MZUSP85740, Dysith_mental _LSU2003,
Dysith_mental _LSU66338, Dysith_mental LSU26463,
Dysith_mental_LSU69439, Dysith_mental_LSU69289,
Dysith_mental _LSU48490, Dysith_mental L33085,
Dysith_mental_ MZU94637, Dysith_mental _MzZU87834
Dysith_mental_ MZUSP85740, Dysith_mental _LSU2003,
Dysith_mental _LSU22639, Dysith_mental LSU66338,
Dysith_mental_LSU69439, Dysith_mental _LSU69289,
Dysith_mental _LSU48490, Dysith_mental L33085,
Dysith_mental_ MZU94637, Dysith_mental _MZU87834
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Dysith_mental LSU48490

Dysith_mental_LSU66338

Dysith_mental_LSU69289

Dysith_mental LSU69439

Dysith_mental_MZU87834

Dysith_mental_MZU94637

Dysith_mental MZUSP85740

Dysith_occlis_H4028
Dysith_occlis_LSU33931
Dysith_occlis_LSU44189
Elaen_dayi_A4751
Elaen_flavter L6792
Elaen_paltan_K3955
Empinax_atrcep_L28310
Empinax_diffi_A15581
Empinax_hammo_L47262
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Dysith_mental_ MZUSP85740, Dysith_mental _LSU2003,
Dysith_mental_LSU22639, Dysith_mental _LSU66338,
Dysith_mental _LSU26463, Dysith_mental LSU69439,
Dysith_mental_LSU69289, Dysith_mental_L 33085,
Dysith_mental MZU94637, Dysith_mental MZU87834
Dysith_mental MZUSP85740, Dysith_mental _LSU2003,
Dysith_mental_LSU22639, Dysith_mental _LSU26463,
Dysith_mental_LSU69439, Dysith_mental _LSU69289,
Dysith_mental _LSU48490, Dysith_mental L33085,
Dysith_mental_MZU94637, Dysith_mental_MZU87834
Dysith_mental_MZUSP85740, Dysith_mental_LSU2003,
Dysith_mental _LSU22639, Dysith_mental LSU66338,
Dysith_mental_LSU26463, Dysith_mental LSU69439,
Dysith_mental _LSU48490, Dysith_mental L33085,
Dysith_mental_ MZU94637, Dysith_mental_MZU87834
Dysith_mental MZUSP85740, Dysith_mental _LSU2003,
Dysith_mental_LSU22639, Dysith_mental LSU66338,
Dysith_mental _LSU26463, Dysith_mental LSU69289,
Dysith_mental_LSU48490, Dysith_mental _L33085,
Dysith_mental MZU94637, Dysith_mental MZU87834
Dysith_mental MZUSP85740, Dysith_mental _LSU2003,
Dysith_mental_LSU22639, Dysith_mental LSU66338,
Dysith_mental_LSU26463, Dysith_mental LSU69439,
Dysith_mental _LSU69289, Dysith_mental LSU48490,
Dysith_mental_L33085, Dysith_mental MZU94637
Dysith_mental_ MZUSP85740, Dysith_mental _LSU2003,
Dysith_mental _LSU22639, Dysith_mental LSU66338,
Dysith_mental_LSU26463, Dysith_mental _LSU69439,
Dysith_mental _LSU69289, Dysith_mental LSU48490,
Dysith_mental _L33085, Dysith_mental MZU87834
Dysith_mental _LSU2003, Dysith_mental LSU22639,
Dysith_mental_LSU66338, Dysith_mental LSU26463,
Dysith_mental _LSU69439, Dysith_mental LSU69289,
Dysith_mental _LSU48490, Dysith_mental _L33085,
Dysith_mental MZU94637, Dysith_mental MZU87834
Dysith_occlis_LSU33931, Dysith_occlis_LSU44189
Dysith_occlis_L.SU44189, Dysith_occlis_H4028
Dysith_occlis_LSU33931, Dysith_occlis_H4028
Elaen_flavter L6792

Elaen_dayi_A4751

Elaen_paltan_A4855

Empinax_diffi_A15581

Empinax_atrcep_L28310

Empinax_hammo_LSU19434
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Empinax_hammo_LSU19434
Empinax_trail_LSU141724
Epinec_leulma_LSUMZ18242
Epinec_ornata_LSU74213
Epinec_ornata_LSU78113
Euryla_steer K19050

Formvor_grisea_ COPIC1436

Formvor_grisesa_ COPML659

Formvor_grisesa_ COPML771

Formvor_grisea_ COPYPL49

Formvor_grisea_ FMNH394490
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Empinax_hammo_L47262

Empinax_trail_MCZ337725

Epinec_eryura_ ANSP16560

Epinec_ornata_LSU78113

Epinec_ornata_LSU74213

Euryla_steer K19186

Formvor_grisea_K12150k,

Formvor_grisea_ FMNH394490,

Formvor_grisea_ COPML771, Formvor_grisea LSU46513,
Formvor_grisea_ COPML659,

Formvor_grisea_ COPYPL49, Formvor_grisea_L15217,
Formvor_grisea_ICN36199, Formvor_grisea_ICN38217,
Formvor_grisea_ MCP3156, Formvor_grisea_ICN37055,
Formvor_grisea ICNAMC1366
Formvor_grisea_K12150k,

Formvor_grisea_ FMNH394490,

Formvor_grisea_ COPML771, Formvor_grisea LSU46513,
Formvor_grisea_ COPIC1436,

Formvor_grisea_ COPYPL49, Formvor_grisea_L 15217,
Formvor_grisea_ICN36199, Formvor_grisea_ICN38217,
Formvor_grisea_ MCP3156, Formvor_grisea ICN37055,
Formvor_grisea ICNAMC1366
Formvor_grisea_K12150k,

Formvor_grisea_ FMNH394490,
Formvor_grisea_LSU46513, Formvor_grisea_ COPML659,
Formvor_grisea_ COPIC1436,

Formvor_grisea_ COPYPL49, Formvor_grisea_L 15217,
Formvor_grisea_ICN36199, Formvor_grisea_ICN38217,
Formvor_grisea_ MCP3156, Formvor_grisea_ICN37055,
Formvor_grisea_ ICNAMC1366
Formvor_grisea_K12150k,

Formvor_grisea_ FMNH394490,

Formvor_grisea_ COPML771, Formvor_grisea LSU46513,
Formvor_grisea_ COPML659,

Formvor_grisea_ COPIC1436, Formvor_grisea_L15217,
Formvor_grisea_ICN36199, Formvor_grisea_ICN38217,
Formvor_grisea_ MCP3156, Formvor_grisea ICN37055,
Formvor_grisea ICNAMC1366
Formvor_grisea_K12150k, Formvor_grisea_ COPML771,
Formvor_grisea_LSU46513, Formvor_grisea_ COPML659,
Formvor_grisea_COPIC1436,

Formvor_grisea_ COPYPL49, Formvor_grisea_L 15217,
Formvor_grisea_ICN36199, Formvor_grisea_ICN38217,
Formvor_grisea_ MCP3156, Formvor_grisea_ICN37055,
Formvor_grisea_ ICNAMC1366
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Formvor_grisea ICN36199

Formvor_grisea_ICN37055

Formvor_grisea ICN38217

Formvor_grisea ICNAMC1366

Formvor_grisea L15217

Formvor_grisea_K12150k,

Formvor_grisea_ FMNH394490,

Formvor_grisea_ COPML771, Formvor_grisea LSU46513,
Formvor_grisea_ COPML659,

Formvor_grisea_ COPIC1436,

Formvor_grisea_ COPYPLA49, Formvor_grisea_L 15217,
Formvor_grisea ICN38217, Formvor_grisea_ MCP3156,
Formvor_grisea_ICN37055,

Formvor_grisea ICNAMC1366
Formvor_grisea_K12150k,

Formvor_grisea_ FMNH394490,

Formvor_grisea_ COPML771, Formvor_grisea_LSU46513,
Formvor_grisea_ COPML659,

Formvor_grisea_ COPIC1436,

Formvor_grisea_ COPYPL49, Formvor_grisea_L 15217,
Formvor_grisea_ICN36199, Formvor_grisea_ICN38217,
Formvor_grisea_ MCP3156,

Formvor_grisea ICNAMC1366
Formvor_grisea_K12150k,

Formvor_grisea_ FMNH394490,

Formvor_grisea_ COPML771, Formvor_grisea LSU46513,
Formvor_grisea_ COPML659,

Formvor_grisea_ COPIC1436,

Formvor_grisea_ COPYPL49, Formvor_grisea_L 15217,
Formvor_grisea ICN36199, Formvor_grisea_ MCP3156,
Formvor_grisea_ICN37055,

Formvor_grisea ICNAMC1366
Formvor_grisea_K12150k,

Formvor_grisea_ FMNH394490,

Formvor_grisea_ COPML771, Formvor_grisea_LSU46513,
Formvor_grisea_ COPML659,

Formvor_grisea_ COPIC1436,

Formvor_grisea_ COPYPL49, Formvor_grisea_L 15217,
Formvor_grisea_ICN36199, Formvor_grisea ICN38217,
Formvor_grisea_ MCP3156, Formvor_grisea ICN37055
Formvor_grisea_K12150k,

Formvor_grisea FMNH394490,

Formvor_grisea_ COPML771, Formvor_grisea_LSU46513,
Formvor_grisea_ COPML659,

Formvor_grisea_ COPIC1436,

Formvor_grisea_ COPYPLA49, Formvor_grisea_ICN36199,
Formvor_grisea ICN38217, Formvor_grisea_ MCP3156,
Formvor_grisea_ICN37055,

Formvor_grisea ICNAMC1366
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Formvor_grisea_LSU46513

Formvor_grisea_ MCP3156

Formvor_litto MCPRBL141
Formvor_litto NC43
Formvor_melgas FMNH392854
Formvor_melgas_LSU6675
Formvor_rufa_ FMNH392619
Formvor_rufa_K3561
Formvor_rufa KU18778
Formvor_serra_ MCPRBL184
Formvor_serra_ MZUSP85432
Freder_undul _LSU4826
Freder_undul_MZUSPJ282
Gralria_quit_H2523
Gralula_ferpec_LSUMZ8056
Gralula_linfro_1C33814
Haffer_immlata_Ph208
Heliob_conta F389197
Heliob_conta_MZU82580
Hellma_gular_ 132238
Hemit_graden_L.32603
Hemit_inotus_ L3847
Hemit_inotus_YPM101772
Herpsi_axill_LSU33661
Herpsi_axill_LSU58398

Herpsi_ruftus_ KU3776
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Formvor_grisea_K12150k,

Formvor_grisea_ FMNH394490,
Formvor_grisea COPML771,

Formvor_grisea_ COPML659,

Formvor_grisea_ COPIC1436,

Formvor_grisea_ COPYPLA49, Formvor_grisea_L 15217,
Formvor_grisea ICN36199, Formvor_grisea ICN38217,
Formvor_grisea_ MCP3156, Formvor_grisea_ICN37055,
Formvor_grisea ICNAMC1366
Formvor_grisea_K12150k,

Formvor_grisea_ FMNH394490,

Formvor_grisea_ COPML771, Formvor_grisea_LSU46513,
Formvor_grisea_ COPML659,

Formvor_grisea_ COPIC1436,

Formvor_grisea_ COPYPL49, Formvor_grisea_L 15217,
Formvor_grisea_ICN36199, Formvor_grisea_ICN38217,
Formvor_grisea ICN37055,

Formvor_grisea ICNAMC1366

Formvor_litto NC43

Formvor_litto MCPRBL141
Formvor_melgas_LSU6675

Formvor_melgas FMNH392854

Formvor_rufa_K3561, Formvor_rufa_KU18778
Formvor_rufa_KU18778, Formvor_rufa FMNH392619
Formvor_rufa_K3561, Formvor_rufa_ FMNH392619
Formvor_serra_ MZUSP85432

Formvor_serra MCPRBL 184
Freder_undul_MZUSPJ282

Freder_undul_LSU4826

Gralria_quit_LSUMZ104492

Gralula_linfro_1C33814

Gralula_ferpec_LSUMZ8056

Haffer_immlata_H92

Heliob_conta_MZU82580

Heliob_conta F389197

Hellma_gular_L3515

Hemit_graden_LSUMZ109001
Hemit_inotus_YPM101772

Hemit_inotus_L3847

Herpsi_axill_LSU58398

Herpsi_axill_LSU33661

Herpsi_ruftus_LSU78137, Herpsi_ruftus_LSU2200,
Herpsi_ruftus_MZU94326
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Herpsi_ruftus_LSU2200
Herpsi_ruftus_LSU78137

Herpsi_ruftus_MZU94326

Herpsi_selowi_CP3140
Herpsi_selowi_UFP4917
Heteroc_autiivert_ 142512
Heteroc_autiivert_LAlvarez
Hirund_fernea_SB10509
Hirund_fernea_Y101003
Hypleu_gutus_ MCP3130
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Thamphil_paltus_KU17412
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Willis_poetus_ MCP2362 Willis_poetus_L55367
Xolmis_irupe_SB14801 Xolmis_pyrope_A12144
Xolmis_pyrope_Al12144 Xolmis_irupe_SB14801
Zimmer_chrsop_L33819 Zimmer_vilmus_A5019
Zimmer_vilmus_A5019 Zimmer_chrsop_L33819
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Table S9. List of fossils used for estimating the age of calibration nodes. Fossil ages (in Mega-
annum) are indicated as the midpoint and the stratigraphic lower and upper bounds (within
parenthesis). References list original descriptions and new information regarding phylogenetic

placement and age

Taxon Species Fossil age (Ma) Continent References
Psittacopasserae
Passeriformes glloolr(;soraws sedilis Bertelli et al 54.3 (54 -54.5) Europe 68-70
. Eozygodactylus americanus i N 70, 160,
Zygodactylidae Weidig 2010 52 (52-52) America 161
o Namapsitta praeruptorum i .
Psittaciformes Mourer-Chauvire et al. 2015 38.8 (37.2-40.4) Africa 162
Nestoridae Nelepsittacus minimus Worthy 47 51619y zealandia 163
et al 2011
Cacatuidae Cacatua sp. 143 (125-16) Australia 164
Psittaciformes genus indet. 12.7 (11.6 - 13.7) Asia 165
Psittacidae Nandayus vorohuensis Toni & 31 56 36) 5 America 166
Noriega 1996
eupasseres
. Wieslochia weissi Mayr &
Tyranni Manegold 2006 31.3(30.5-32) Europe 71,72
Orthonychidae %r;go”yx kaldowinyeri Boles 24(23-25)  Australia 167, 168
Cracticiade not named 17.5 (16 - 19) Zealandia 169
Corvoidea not named 16 (15.5-16.5) Asia 170
. Miocitta galbreathi Brodkorb N
Passeri 1972 14.8 (13.6 - 16) America 171,172
Muscicapidae Luscinia cf. megarhynchos 13.8(11.6 - 16)  Africa 172,173
Tyranni genus indet. S America 174
Certhioidea
Certhioidea ggg;h"’ps rummeli Manegold 49 3 18205 Europe 73
Sittidae Sitta sp. 29(26-3.2) Asia 175
- . . 0.069 (0.012- N
Sittidae Sitta canadensis 0.13) America 176
Passeroidea-Emberizoidea
Passeroidea Loxia sp., Passer sp. 21.2(20-22.4) Europe 74,177
. Palaeostruthus hatcheri Shufeldt N
Passerellidae 1913 8.5(5.3-11.6) America 178
- Pliocalcarius orkhonensis .
Fringillidae Zelenkov & Kurochkin 2012 29(26-3.2) Asia 175
Passerellidae Zonotrichia robusta Tonni 1970 08(0.4-1.2) S America 179
. Emberiza alcoveri Rando et al. 0.06 (0.012 - .
Emberizidae 1999 0.126) Africa 180
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Table S10. List of toe pads and samples with low-grade contamination removed for initial time

calibration

Tip Reason
Anaire_ferna_CM120730 Toepad
Nesotr_ridway F299961 Toepad
Phaeo_murina_L90440 Toepad
Pyrrho_cinmeus_ AMNH388114 Poor Quality
Pyrrho_cinmeus_FMNH262783 Toepad
Calytur_criata_A494721 Toepad
Pipreo_form_LSUMZ68564 Toepad
Pipreo_jucu_YPM40970 Toepad
Carpod_nitdus_A247754 Toepad
Carpod_antiae_ YPM56780 Toepad
Cotin_macata_ MZUSP25763 Toepad
Cotin_macata LACM60338 Toepad
Cotin_ridway LSUMZ161196 Toepad
Cotin_amabi_KU104762 Toepad
Procni_avera MPEG33151 Toepad
Procni_avera MPEG33152 Toepad
Neopel_aurons_ MFV1262 Toepad
Corapi_leurho_ICN33757 Toepad
Lepthr_isirei_IC35523 Toepad
Machae_reglus_ICN37287 Toepad
Machae_reglus_ FMNH344155 Toepad
Nestor_merlis_A11054 Poor Quality
Gallus_L36208 Poor Quality
Pseutom_graueri_F311050 Toepad
Pseutom_graueri_A764296 Toepad
Pitta_vensta FMNH211861 Toepad
Pitta_arqu_WFVZ38387 Toepad
Pitta_elli_ FMNH90286 Toepad
Pitta_gurn_FMNH373398 Toepad
Pitta_caelea WFVZ38385 Toepad
Pitta_niplen_A463316 Toepad
Pitta_phayre YPM68280 Toepad
Pitta_suprba_ AMNH334850 Toepad
Pitta_maxima_USNM572244 Toepad
Pitta_molcen_USNM484025 Toepad
Pitta_bracura_A778678 Toepad
Pitta_reiowi_ AMNH296892 Toepad
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Gralria_gigant. ANS19619 Poor Quality
Gralria_haplo_COP79821 Toepad
Gralria_chth_COP62208 Toepad
Gralria_grinuc_ FMNH288314 Toepad
Gralria_rufcin_ USNM436486 Toepad
Gralria_flavtin_FMNH251116 Toepad
Gralria_dignis_ ANS18198 Poor Quality
Cham_camson_ICN35539 Toepad
Cham_camson_USNM575267 Toepad
Cham_turdi_USNM595636 Toepad
Cham_turdi_ICN35838 Toepad
Berlep_rikeri_F391336 Toepad
Asthen_berle. AMNH348840 Toepad
Pseusei_criata LSUMZ181472 Toepad
Crani_curta_ USNM373226 Toepad
Aphras_masfue. AMNH156338 Toepad
Cincl_antcus_A817070 Toepad
Furnar_fig_F392829 Toepad
Psilor_gutus_A796861 Poor Quality
Eleosc_psypom_MZUSP33429 Toepad
Scyta_carcae_MLS13165 Toepad
Scyta_magel MCZzZ85311 Toepad
Scyta_zimme_ANSP146343 Toepad
Scyta_zimme_ANSP146341 Toepad
Scyta_canu_USNM436508 Toepad
Myornis_senil_LSUMZ32297 Poor Quality
Myrmel_caure_ FMNH319247 Toepad
Myrmel_caure_ USNM444127 Toepad
Gymnop_leuca FMNH248929 Toepad
Thamphil_puntat. ANSP168259 Toepad
Thamphil_dolia_ USNM471360 Toepad
Thamphil_dolia_ ANSP168260 Toepad
Dysith_mental ANSP19107 Poor Quality
Herpsi_axill_ANSP158009 Toepad
Myrrul_sunsis_LSUMZ83142 Toepad
Myrrul_flum_MNRJ40786 Toepad
Euchre_humer_LSU40880 Poor Quality
Euchre_spoila_ ANSP152407 Toepad
lodop_pipra_SP50046 Toepad
Pachy_niger_MVZ149921 Toepad
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Mionec_olieus_LSUMZ90443

Mionec_olieus FMNH43470
Physca_krone_MZUSP67757
Physca_krone_MZUSP67751
Physca_krone_ FMNH344612
Physca_flavren_USNM525978
Physca_pausta_ MZUSP28600
Physca_pausta_ MZUSP24471
Physca_vennus_LSUMZ68572
Physca_lanoni_IC32557
Physca_lanoni_IC31805
Poeci_pullus FMNH311517
Hemit_miran_MZUSP41847
Hemit_miran_MZUSP41848
Rhynch_paccus_ ANS17359
Ochoec_diade LSUMZ90427
Myiopho_inotus_LSUMZ98534
Cnemot_fustus_ YPM137446
Xenotr_mexic_LSUMZ24529
Contop_cariba_ USNM327749
Contop_paldus_MVZ149935
Musaxi_albfro_LSU22576
Myiothe_pernix_USNM?387496
Agrior_livid_YPMB83046
Neoxol_ruftri_L70016
Knipo_cyatri_S630514
Phelps_inoata 1C38372
Muspip_vetula_A315092
Myiar_vensis_ICN36064
Myiar_valdus ROM109657
Myiar_oberi_USNM572208
Myiar_magni_MVZ151437
Myiar_nugtor ROM109720
Myioze lutei_LSU40646
Tyranus_cube_YPM33527
Tyranus_cube YPM33528
Ornith_semvum_MVZ161988
Phymyi_urichi_FMNH92193
Phymyi_reiser MZUSP51944
Phymyi_reiser MZUSP51943
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Stigma_napen_FMNH392295 Toepad
Zimmer_chrsop_ EBRG11267 Toepad
Myiopag_virata_LSU18455 Poor Quality
Elaen_ridyan_MZUSP80416 Toepad
Elaen_chisis_ICN34252 Toepad
Pseucol_dinel A270377 Toepad
Serpop_grilla_MZU86172 Poor Quality
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Table S11. Number of species in major geographic regions

Region Species
Neotropics 1250
Nearctic 27
Old World 49
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Table S12. Best-fit substitution models based on AlCc for subset of 100 loci

Model Number of Loci
GTRGAMMA 87
HKY85 7
JC69 0
K80 6
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Table S13. Misidentified or heavily contaminated samples

Tip

Removed from:

Lepcol_alblin_LSUMZ7508
Siptor_strcol L6202
Myiopag_cotta LSUMZ143820
Empinax_vircen_L 64495
Acropt_ortnyx PhAMC1246

T400F and HGAPF datasets
T400F and HGAPF datasets
T400F and HGAPF datasets
T400F and HGAPF datasets
HGAPF dataset only
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Table S14. Cases of paraphyly of suboscine genera
Genus

Chiroxiphia
Clhytoctantes
Cranioleuca
Drymophila
Dysithamnus
Eurylaimus
Formicivora
Hemitriccus
Herpsilochmus
Hylopezus
Leptasthenura
Lipaugus
Lophotriccus
Mecocerculus
Muscisaxicola
Myiophobus
Myiornis
Myrmotherula
Neopelma
Ochthoeca
Phaeomyias
Philydor
Phyllomyias
Pitangus
Poecilotriccus
Polystictus
Ramphotrigon
Rhytipterna
Sakesphorus
Serpophaga
Suiriri
Synallaxis
Thripophaga
Tijuca

Xolmis
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Table S15. Cases of paraphyly of suboscine species

Genus Species
Asthenes dorbignyi
Asthenes fuliginosa
Camptostoma obsoletum
Campylorhamphus ~ procurvoides
Campylorhamphus trochilirostris
Chamaeza campanisona
Clibanornis rubiginosus
Contopus cinereus
Cranioleuca curtata
Dendrocincla fuliginosa
Elaenia albiceps
Elaenia obscura
Elaenia pallatangae
Euchrepomis callinota
Euchrepomis humeralis
Euchrepomis spodioptila
Formicarius analis
Furnarius leucopus
Grallaria blakei
Grallaria rufula
Grallaricula ferrugineipectus
Hylexetastes perrotii
Knipolegus aterrimus
Leptasthenura aegithaloides
Manacus manacus
Mionectes macconnelli
Mionectes olivaceus
Myiarchus swainsoni
Myiarchus tuberculifer
Myiarchus tyrannulus
Myiopagis caniceps
Myiophobus flavicans
Myiornis auricularis
Ochthoeca diadema
Pachyramphus albogriseus
Percnostola rufifrons
Phaeomyias murina
Pseudocolaptes lawrencii
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Rhytipterna simplex
Sclerurus mexicanus
Scytalopus altirostris
Scytalopus atratus
Scytalopus latrans
Stigmatura budytoides
Stigmatura napensis
Synallaxis azarae
Synallaxis gujanensis
Synallaxis stictothorax
Synallaxis unirufa
Thamnomanes caesius
Thamnophilus palliatus
Thamnophilus ruficapillus
Thamnophilus tenuepunctatus
Tolmomyias assimilis
Tolmomyias sulphurescens
Xiphocolaptes promeropirhynchus
Zimmerius chrysops
Zimmerius vilissimus
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Table S16. Gamma (y) test statistics without and with trimming of the most recent 2.5 Ma for all
6 taxonomies, the HGAPF tree for Howard and Moore classification, and the Astral tree with and
without samples missing from >250 gene trees dropped for Howard and Moore classification

Untrimmed Untrimmed Trimmed  Trimmed
Y P Value v P Value

T400F AOS H&M -10.42 2.03 x 105 3.99 6.61 x 10°
T400F AOS H&M with intraspecific
sampling -4.78 1.71 x 10 6.98 2.87 x 1012
T400F AOS Clements -10.35 423 x10% 3.99 6.61 x 10°
T400F IUCN -10.50 9.08 x 10%¢ 4.44 8.79 x 10°®
T400F 1 Ma cutoff -7.52 5.28 x 1014 6.98 2.87 x 1012
T400F 2 Ma cutoff -15.03 4.49 x 10 6.98 2.87 x 102
HGAPF H&M -6.48 8.99 x 10! 3.56 3.69 x 10*
T400F Astral H&M -10.70 1.01 x 10-% 1.70 9.00 x 107?
T400F Astral H&M poor samples
dropped -7.96 1.75 x 10%° 3.83 1.26 x 10*
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Table S17. Likelihood ratio test results of TreePar models

Chi-squared
Model statistic*
addition of one shift 0.98
addition of a second shift 0.70
addition of a third shift 0.77
addition of a fourth shift 0.54
addition of a fifth shift 0.15
addition of a sixth shift 0.37
addition of a seventh shift 0.26
addition of an eigth shift 0.00
addition of a ninth shift 0.12

*values over 0.95 indicate improvement (alpha=0.05)
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Table S18. FISSE results of difference in log ES between New World (Ao) and Old World (A1)
for 3 taxonomies, the HGAPF tree for Howard and Moore classification, and the Astral tree with
and without samples missing from >250 gene trees dropped for Howard and Moore classification

Null Mean

M M Difference P Value
AOS H&M -1.6282 -2.3302 -0.0047 0.0889
AOS CLEMENTS -1.6282 -2.2589 -0.0169 0.1049
IUCN -1.6195 -2.2673 -0.0065 0.1019
HGAPF H&M -1.5750 -2.4359 0.0063 0.0629
Astral T400F H&M -1.6509 -2.3594 -0.0277 0.0809
Astral T400F H&M missing dropped -1.5619 -2.3784 -0.0163 0.0649
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Table S19. FISSE results of difference in log ES between Neotropics (Ao) and Nearctic (A1) for 3
taxonomies, the HGAPF tree for Howard and Moore classification, and the Astral tree with and
without samples missing from >250 gene trees dropped for Howard and Moore classification

Null Mean
M M Difference P Value
AOS H&M -1.6416 -1.0277 -0.0133 0.9980
AOS CLEMENTS -1.6416 -1.0277 0.0043 0.9990
IUCN -1.6324 -1.0277 -0.0031 0.9980
HGAPF H&M -1.5925 -0.7900 0.0213 0.9990
Astral T400F H&M -1.6639 -1.0694 -0.0128 0.9990

Astral T400F H&M missing dropped -1.5758 -0.9673 0.0052 0.9990
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Table S20. ESsim results of association between ES and absolute latitude for 3 taxonomies, the
HGAPF tree for Howard and Moore classification, and the Astral tree with and without samples
missing from >250 gene trees dropped for Howard and Moore classification

p P Value
AOS H&M 0.1587 0.1439
AOS CLEMENTS 0.1558 0.1359
IUCN 0.1528 0.1778
HGAPF H&M 0.1686 0.2098
Astral T400F H&M 0.0937 0.3556
Astral T400F H&M missing dropped 0.1576 0.1878
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Table S21. FISSE results of differences in log ES among Neotropical regions (see Fig. S10) and
between Neotropical regions and the Nearctic (NA) and Old World (OW) regions

Regionl Region?2 P-Value Ao M Null_Mean_Diff
Wi AM 0.00 -0.80 -1.73 0.00
Wi AN 0.00 -0.80 -1.56 0.00
Wi NA 0.16 -0.80 -1.08 0.00
Wi ow 0.02 -0.80 -2.33 0.04
Wi PA 0.08 -0.80 -1.51 0.00
Wi DT 0.00 -0.80 -1.55 0.00
Wi AF 0.00 -0.80 -1.81 0.00
Wi CA 0.00 -0.80 -1.55 0.02
AM AN 0.96 -1.73 -1.56 0.00
AM NA 0.98 -1.73 -1.08 -0.01
AM ow 0.15 -1.73 -2.33 0.00
AM PA 0.89 -1.73 -151 -0.01
AM DT 0.97 -1.73 -1.55 0.00
AM AF NA -1.73 -1.81 NA
AM CA 0.98 -1.73 -1.55 0.00
AN NA 0.96 -1.56 -1.08 -0.01
AN oW 0.12 -1.56 -2.33 -0.01
AN PA 0.64 -1.56 -151 -0.01
AN DT 0.53 -1.56 -1.55 0.00
AN AF 0.00 -1.56 -1.81 0.00
AN CA 0.56 -1.56 -1.55 0.00
NA ow 0.03 -1.08 -2.33 0.03
NA PA 0.26 -1.08 -1.51 0.02
NA DT 0.06 -1.08 -1.55 0.00
NA AF 0.01 -1.08 -1.81 0.00
NA CA 0.02 -1.08 -1.55 0.00
Oow PA 0.78 -2.33 -1.51 -0.01
ow DT 0.84 -2.33 -1.55 -0.02
Oow AF 0.82 -2.33 -1.81 0.00
ow CA 0.92 -2.33 -1.55 -0.02
PA DT 0.40 -1.51 -1.55 0.00
PA AF 0.03 -151 -1.81 -0.01
PA CA 0.44 -151 -1.55 0.00
DT AF 0.00 -1.55 -1.81 0.00
DT CA 0.55 -1.55 -1.55 0.00
AF CA 1.00 -1.81 -1.55 0.00
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Table S22. FISSE results of difference in mean NH between Neotropics (nh0) and Nearctic
(nh1) for 3 taxonomies, the HGAPF tree for Howard and Moore classification, and the Astral
tree with and without samples missing from >250 gene trees dropped for Howard and Moore

classification
Null Mean

nh( nhl Difference P Value
AOS H&M 2.9794 2.7963 0.0002 0.0050
AOS CLEMENTS 2.9794 2.7963 0.0018 0.0040
IUCN 2.9785 2.7963 -0.0011 0.0070
HGAPF H&M 2.9846 2.7536 -0.0019 0.0010
Astral T400F H&M 2.8792 2.7050 0.0030 0.0180
Astral T400F H&M missing dropped 2.8964 2.6891 0.0000 0.0030
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Table. S23. FISSE results between Nearctic and Neotropics using mean vs. median NH

Null Mean
nh( nhl Difference P Value
Mean 2.9794 2.7963 0.0013 0.0050
Median 2.8223 2.6210 0.0003 0.0769
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Table S24. FISSE results of difference in mean NH between Old World (nh0O) and New World
(nh1) for 3 taxonomies, the HGAPF tree for Howard and Moore classification, and the Astral
tree with and without samples missing from >250 gene trees dropped for Howard and Moore

classification
Null Mean
nh( nhl Difference P Value
AOS H&M 2.9754 3.1935 0.0033 0.9151
AOS CLEMENTS 2.9754 3.1793 0.0022 0.9091
IUCN 2.9747 3.1802 -0.0062 0.9131
HGAPF H&M 2.9795 3.2357 0.0010 0.9311
Astral T400F H&M 2.8754 3.1899 -0.0009 0.9670
Astral T400F H&M missing dropped 2.8917 3.1902 0.0014 0.9500
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Table. S25. FISSE results between Old World and New World using mean vs. median NH

Null Mean
nh( nhl Difference P Value
Mean 2.9754 3.1935 -0.0050 0.9191
Median 2.8179 3.1485 -0.0074 0.9091
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Table S26. NHsim results of association between mean NH and absolute latitude for 3
taxonomies, the HGAPF tree for Howard and Moore classification, and the Astral tree with and
without samples missing from >250 gene trees dropped for Howard and Moore classification

p P Value
AOS H&M -0.1223 0.3397
AOS CLEMENTS -0.1203 0.3337
IUCN -0.1145 0.4036
HGAPF H&M -0.1389 0.4456
Astral T400F H&M -0.0858 0.5315

Astral T400F H&M missing dropped -0.1374 0.3337
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Table. S27. NHsim versus latitude results using mean vs. median NH

p P Value
Mean -0.1223 0.3397
Median -0.0939 0.4575
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Table S28. FISSE results of differences in mean NH among Neotropical regions (see Fig. S10)
and between Neotropical regions and the Nearctic (NA) and Old World (OW) regions

Regionl Region?2 P-Value nh0 nhl Null Mean Diff
Wi AM 1.00 2.76 3.00 0.01
Wi AN 0.99 2.76 2.96 0.00
Wi NA 0.70 2.76 2.80 0.00
Wi ow 0.95 2.76 3.19 0.00
Wi PA 0.89 2.76 2.98 0.00
Wi DT 0.99 2.76 2.95 0.00
Wi AF 1.00 2.76 3.01 0.00
Wi CA 0.99 2.76 2.96 0.00
AM AN 0.07 3.00 2.96 0.00
AM NA 0.02 3.00 2.80 0.01
AM oW 0.84 3.00 3.19 0.00
AM PA 0.38 3.00 2.98 0.00
AM DT 0.05 20.42 19.24 0.03
AM AF NA 3.00 3.01 NA
AM CA 0.07 3.00 2.96 0.00
AN NA 0.05 2.96 2.80 0.00
AN oW 0.89 2.96 3.19 0.00
AN PA 0.72 19.51 20.09 -0.02
AN DT 0.36 19.51 19.24 -0.01
AN AF 0.99 2.96 3.01 0.00
AN CA 0.49 2.96 2.96 0.00
NA ow 0.95 2.80 3.19 0.01
NA PA 0.81 2.80 2.98 0.00
NA DT 0.94 2.80 2.95 0.00
NA AF 0.97 2.80 3.01 0.01
NA CA 0.99 2.80 2.96 0.00
Oow PA 0.23 3.19 2.98 0.01
ow DT 0.15 3.19 2.95 0.00
Oow AF 0.16 3.19 3.01 0.00
ow CA 0.09 3.19 2.96 0.00
PA DT 0.23 20.09 19.24 -0.05
PA AF 0.73 2.98 3.01 0.00
PA CA 0.37 2.98 2.96 0.00
DT AF 1.00 2.95 3.01 0.00
DT CA 0.64 2.95 2.96 0.00
AF CA 0.01 3.01 2.96 0.00
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Table S29. FISSE results of difference in TB between Neotropics (tb0) and Nearctic (tb1) for 3
taxonomies, the HGAPF tree for Howard and Moore classification, and the Astral tree with and
without samples missing from >250 gene trees dropped for Howard and Moore classification

Null Mean
th0 th1 Difference P Value
AOS H&M 1.1702 0.6516 0.0155 0.0040
AOS Clements 1.1702 0.6516 0.0117 0.0100
IUCN 1.1558 0.6516 -0.0029 0.0220
HGAPF H&M 1.0706 0.3322 -0.0116 0.0020
Astral T400F H&M 1.2515 0.7357 0.0075 0.0090
Astral T400F H&M missing dropped 1.0940 0.6285 -0.0035 0.0160
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Table S30. FISSE results of difference in TB between Old World (tb0) and New World (tb1) for
3 taxonomies, the HGAPF tree for Howard and Moore classification, and the Astral tree with and
without samples missing from >250 gene trees dropped for Howard and Moore classification

Null Mean
th0 th1 Difference P Value
AOS H&M 1.1589 1.7527 0.0237 0.8492
AOS Clements 1.1589 1.6044 0.0147 0.7682
IUCN 1.1451 1.6392 0.0138 0.8142
HGAPF H&M 1.0544 1.8302 -0.0009 0.8741
Astral T400F H&M 1.2403 1.8652 -0.0055 0.8881
Astral T400F H&M missing dropped 1.0834 1.7314 -0.0104 0.8861
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Table S31. TBsim results of association between TB and absolute latitude for 3 taxonomies, the
HGAPF tree for Howard and Moore classification, and the Astral tree with and without samples
missing from >250 gene trees dropped for Howard and Moore classification

p P Value
AOS H&M -0.1067 0.2857
AOS Clements -0.1035 0.3157
IUCN -0.1028 0.3197
HGAPF H&M -0.1181 0.3037
Astral T400F H&M -0.0615 0.3596

Astral T400F H&M missing dropped -0.1089 0.2058
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Table S32. FISSE results of difference in TB among Neotropical regions (see Fig. S10) and
between Neotropical regions and the Nearctic (NA) and Old World (OW) regions

Regionl Region?2 P-Value Ao M Null_Mean_Diff
Wi AM 1.00 0.46 1.24 -0.01
Wi AN 0.99 0.46 1.12 -0.01
Wi NA 0.86 0.46 0.73 0.00
Wi ow 0.90 0.46 1.75 -0.04
Wi PA 0.90 0.46 1.04 -0.01
Wi DT 0.98 0.46 1.06 0.01
Wi AF 1.00 0.46 1.36 -0.01
Wi CA 0.97 0.46 1.01 -0.01
AM AN 0.08 1.24 1.12 0.00
AM NA 0.07 1.24 0.73 0.01
AM ow 0.76 1.24 1.75 0.00
AM PA 0.12 1.24 1.04 0.01
AM DT 0.06 1.24 1.06 0.00
AM AF NA 1.24 1.36 NA
AM CA 0.01 1.24 1.01 0.00
AN NA 0.07 1.12 0.73 -0.01
AN ow 0.83 1.12 1.75 0.01
AN PA 0.29 1.12 1.04 0.01
AN DT 0.31 1.12 1.06 0.00
AN AF 1.00 1.12 1.36 0.00
AN CA 0.12 1.12 1.01 0.00
NA ow 0.88 0.73 1.75 0.02
NA PA 0.71 0.73 1.04 0.03
NA DT 0.87 0.73 1.06 -0.02
NA AF 0.97 0.73 1.36 0.01
NA CA 0.88 0.73 1.01 0.00
ow PA 0.19 1.75 1.04 0.01
ow DT 0.18 1.75 1.06 0.04
Oow AF 0.27 1.75 1.36 -0.02
ow CA 0.09 1.75 1.01 0.00
PA DT 0.54 1.04 1.06 0.00
PA AF 0.96 1.04 1.36 0.00
PA CA 0.48 1.04 1.01 -0.01
DT AF 0.99 1.06 1.36 0.00
DT CA 0.35 1.06 1.01 0.00
AF CA 0.00 1.36 1.01 0.00
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Table S33. FISSE results of difference in SR between Old World (sr0) and New World (sr1) for
3 taxonomies, the HGAPF tree for Howard and Moore classification, and the Astral tree with and
without samples missing from >250 gene trees dropped for Howard and Moore classification

Null Mean

sr( srl Difference P Value
AOS H&M 0.0813 0.1012 -0.0002 0.9920
AOS Clements 0.0813 0.1012 0.0000 0.9910
IUCN 0.0811 0.1008 0.0002 0.9940
HGAPF H&M 0.0145 0.0214 0.0000 0.9920
Astral T400F H&M 0.0827 0.1009 -0.0001 0.9950
Astral T400F H&M missing dropped 0.0833 0.1027 0.0000 0.9880
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Table S34. FISSE results of difference in SR between Neotropics (sr0) and Nearctic (srl) for 3
taxonomies, the HGAPF tree for Howard and Moore classification, and the Astral tree with and
without samples missing from >250 gene trees dropped for Howard and Moore classification

Null Mean
sr( srl Difference P Value
AOS H&M 0.0814 0.0803 -0.0001 0.3926
AOS Clements 0.0814 0.0803 0.0001 0.4026
IUCN 0.0812 0.0803 0.0000 0.3896
HGAPF H&M 0.0145 0.0135 0.0000 0.2308
Astral T400F H&M 0.0827 0.0820 0.0003 0.3926
Astral T400F H&M missing dropped 0.0834 0.0825 0.0002 0.3836
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Table S35. SRsim results of association between SR and absolute latitude for 3 taxonomies, the
HGAPF tree for Howard and Moore classification, and the Astral tree with and without samples
missing from >250 gene trees dropped for Howard and Moore classification

p P Value
AOS H&M -0.0804 0.7692
AOS Clements -0.0785 0.8392
IUCN -0.0676 0.8771
HGAPF H&M -0.1875 0.5874
Astral T400F H&M -0.0774 0.8312

Astral T400F H&M missing dropped -0.0782 0.7972
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Table S36. FISSE results of difference in SR among Neotropical regions (see Fig. S10) and
between Neotropical regions and the Nearctic (NA) and Old World (OW) regions

Regionl Region?2 P-Value Ao M Null_Mean_Diff
Wi AM 1.00 0.05 0.07 0.00
Wi AN 0.99 0.05 0.07 0.00
Wi NA 1.00 0.05 0.08 0.00
Wi ow 0.84 0.05 0.08 0.00
Wi PA 0.91 0.05 0.06 0.00
Wi DT 0.99 0.05 0.07 0.00
Wi AF 0.99 0.05 0.07 0.00
Wi CA 1.00 0.05 0.07 0.00
AM AN 0.28 0.07 0.07 0.00
AM NA 0.75 0.07 0.08 0.00
AM oW 0.69 0.07 0.08 0.00
AM PA 0.13 0.07 0.06 0.00
AM DT 0.68 0.07 0.07 0.00
AM AF NA 0.07 0.07 NA
AM CA 0.66 0.07 0.07 0.00
AN NA 0.88 0.07 0.08 0.00
AN oW 0.74 0.07 0.08 0.00
AN PA 0.14 0.07 0.06 0.00
AN DT 0.75 0.07 0.07 0.00
AN AF 0.60 0.07 0.07 0.00
AN CA 0.80 0.07 0.07 0.00
NA ow 0.48 0.08 0.08 0.00
NA PA 0.10 0.08 0.06 0.00
NA DT 0.32 0.08 0.07 0.00
NA AF 0.22 0.08 0.07 0.00
NA CA 0.22 0.08 0.07 0.00
Oow PA 0.28 0.08 0.06 0.00
ow DT 0.33 0.08 0.07 0.00
Oow AF 0.28 0.08 0.07 0.00
ow CA 0.35 0.08 0.07 0.00
PA DT 0.84 0.06 0.07 0.00
PA AF 0.78 0.06 0.07 0.00
PA CA 0.78 0.06 0.07 0.00
DT AF 0.27 0.07 0.07 0.00
DT CA 0.51 0.07 0.07 0.00
AF CA 0.73 0.07 0.07 0.00
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Table S37. Relationships between speciation rates at tips inferred using ES, BAMM, Medusa,
RevBayes with both FRCBDS and CBDS methods, MSBD, and ClaDS based on simple linear

models
Comparison R? P Value

ES vs. BAMM speciation rate 0.165 3.78 x 1052
ES vs. Medusa speciation rate 0.117 1.81 x 1076
ES vs. revBayes FRCBDS speciation rate 0.188 4.25 x 1070
ES vs. revBayes CBDS speciation rate 0.102 9.13 x 102
ES vs. MSBD speciation rate 0.368 6.93 x 107130
ES vs. ClaDS speciation rate 0.366 3.70 x 101?°
BAMM speciation rate vs. Medusa speciation rate 0.609 3.46 x 107264
BAMM speciation rate vs. revBayes FRCBDS speciation rate 0.695 0

BAMM speciation rate vs. revBayes CBDS speciation rate 0.193 6.94 x 1072
BAMM speciation rate vs. MSBD speciation rate 0.114 9.34 x 1036
BAMM speciation rate vs. ClaDS speciation rate 0.208 6.67 x 107
Medusa speciation rate vs. revBayes FRCBDS speciation rate 0.555 1.01 x 1072%
Medusa speciation rate vs. revBayes CBDS speciation rate 0.383 1.03 x 1071%
Medusa speciation rate vs. MSBD speciation rate 0.089 1.01 x 10°%
Medusa speciation rate vs. ClaDS speciation rate 0.162 3.35 x 105!
revBayes FRCBDS vs. revBayes CBDS speciation rate 0.249 5.09 x 102
revBayes FRCBDS speciation rate vs. MSBD speciation rate 0.125 3.91 x 10%
revBayes FRCBDS speciation rate vs. ClaDS speciation rate 0.249 4.78 x 1082
revBayes CBDS speciation rate vs. MSBD speciation rate 0.061 3.49 x 1071°
revBayes CBDS speciation rate vs. ClaDS speciation rate 0.143 5.09 x 10
MSBD speciation rate vs. ClaDS speciation rate 0.100 2.75 x 103!
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Table S38. The results of ESsim tests of speciation rate vs. species richness with different
terminal branch length treatments.

Terminal branch length treatment p p-value
uniformly shortened -0.249 0.007
uniformly lengthened -0.229 0.005
poor-quality sampled retained -0.221 0.017
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Table S39. ESsim results for different taxonomic and geographic subsets of the data

Group p P value
Tyrannidae -0.455 0.001
Amazonia -0.224 0.007
Neotropics -0.228 0.011
Dry Diagonal -0.252 0.047
Thamnophilidae -0.15 0.108
Andes -0.191 0.121
Cotingidae -0.263 0.135
Dendrocolaptidae -0.25 0.155
Furnariidae -0.13 0.176
Central America -0.181 0.197
Atlantic Forest -0.068 0.339
Rhynchocyclidae -0.107 0.37
Old World -0.097 0.401
Pipridae -0.07 0.417
Nearctic 0.102 0.447
Grallariidae -0.005 0.47
Rhinocryptidae 0.043 0.473
Patagonia 0.024 0.479
West Indies 0.006 0.48
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Table S40. Associations between species richness and alternative tip-specific speciation rates

Speciation Rate p P value
BAMM -0.115 0.337
MEDUSA -0.128 0.301
RevBayes (FRCBDS) -0.085 0.379
RevBayes (CBDS) -0.147 0.370
MSBD -0.141 0.078
ClaDS -0.230 0.024
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Table S41. Model comparison involving range size with PGLS

Model AlCc Akaike weight
Species richness + Range size  733.445 0.444
Species richness 733.833 0.366
Range size 735.145 0.190
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Table S42. Results of phylogenetic path analyses for four models

Model P Value CICc ACICc
both 0 3722.71 0
indirect 0 3916.834 194.124
null 0 4161.993 439.284
direct 0 4162.766 440.056
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Table S43. (online Excel file)
Sample information and classifications

Table S44. (online Excel file)
Locus sequence data summary table for the minimally filtered (T400F) dataset

Table S45. (online Excel file)
Locus sequence data summary table for the aggressively filtered (HGAPF) dataset

Table S46. (online Excel file)
Sample sequence data summary table for the minimally filtered (T400F) dataset

Table S47. (online Excel file)
Sample sequence data summary table for the aggressively filtered (HGAPF) dataset
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