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Abstract 

To know the organisms that surround us has always seemed a fascinating idea and a necessity 

to characterize an area and estimate its natural values. However, performing complete surveys 

of the organisms is not always an easy task, because some of them inhabit difficult-to-access 

areas, and some are rare or difficult to be visualized. The analysis of the DNA retrieved from 

environmental samples (for example, water, soil and air) (eDNA) is a promising tool to study 

rapidly and efficiently the species that inhabit any place. This approach seems to show a lot of 

advantages over traditional biodiversity sampling due to its higher sensitivity and reduced cost 

and time needed. Similarly, the use of DNA derived from invertebrates (iDNA), such as blood-

feed mosquitoes and carrion flies, can also be helpful for surveying animal communities, and 

it has been demonstrated to be an important tool to answer other questions, such as distribution, 

range, as well as interactions among coexisting species. In this chapter, we will demonstrate 

how eDNA and iDNA samples combined with molecular tools have been used to survey 
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vertebrate and plant species in the neotropics, highlighting the potential of this approach for 

conservation strategies. 

 

19.1 Introduction - eDNA and iDNA for monitoring biodiversity 

Biodiversity is facing a worldwide crisis (Brooks et al. 2002; Bellard et al. 2012; Dirzo 

et al. 2014; Haddad et al. 2015). Thus, species monitoring is currently a top priority for 

biodiversity protection. However, owing to various limitations, traditional biodiversity 

monitoring methods may not always achieve the given monitoring purpose, raising the urge for 

additional methods capable of reliably monitoring species on wider spatio-temporal scales. 

Aiming to fill this gap, the advances in high-throughput sequencing paved the way for a new 

era in the biodiversity monitoring field, with recent advancements now opening new 

opportunities for studying biodiversity by sequencing DNA retrieved from a plethora of 

sampling media. Some of the main emerging techniques rely on the collection of traces of DNA 

present in the environment, the so-called “environmental DNA” (eDNA). Since all organisms 

release DNA continuously into the surrounding environment (e.g., shed skin, excretes, gametes, 

saliva, hair, feathers, scats), eDNA surveys aim to obtain such DNA remnants from 

environmental samples (e.g., water, sediments, soil, air, lake and ice cores) and identify the 

taxa through the use of specific molecular markers (Fig. 19.1). 

Also, as in a science fiction movie, invertebrates that feed on vertebrates or use them to 

fulfill vital functions of their cycle (e.g., oviposition) have been used as a source of vertebrate 

DNA. Ingested DNA or invertebrate-derived DNA (iDNA) studies (Calvignac-Spencer et al. 

2013; Schnell et al. 2015; Drinkwater et al. 2021) have previously investigated leeches, 

mosquitoes, flies and beetles to successfully survey wildlife and in some situations to conduct 

ecological and biodiversity assessments (Fig. 19.1).  

Species detection studies can be focused on targeting a single species or the whole 

community within an area. Single-taxon approaches use specific narrow-target molecular 

markers and PCR, ddPCR, qPCR amplification (Ficetola et al. 2008; Takahara et al. 2013; 

Piaggio et al. 2014), while community-level approaches use universal markers and parallel 

sequencing to detect a broad range of taxa (i.e., “metabarcoding”) (Wilcox et al. 2013; Rees et 

al. 2014; Thomsen and Willerslev 2015; Turner et al. 2015). Species-specific essays have been 

proven as the most suitable method when targeting one or few species, especially when 

considering rare and difficult-to-detect taxa (e.g., Hernandez et al. 2020), whilst the 

metabarcoding approach has been shown as a more efficient and cost-effective option for a 
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broad characterization of the ecosystem, also allowing the detection of unexpected species or 

hidden diversity (Gillet et al. 2018). 

 Genes COI for animals, and rbcL and matk for plants were previously chosen for 

species identification by sequencing biological samples of individual specimens in the DNA 

barcoding approach (Hebert et al. 2003; Hollingsworth 2011). However, for these emerging 

approaches, the development of new molecular markers was and still is necessary, especially 

because the DNA obtained from eDNA and iDNA samples is often degraded. The need to 

choose smaller fragments (mini-barcodes) for amplification of degraded genetic material, 

which is expected in eDNA and iDNA samples, led to the use of new genes and new primers 

to be targeting these shorter gene regions. For animals, the use of primers targeting small 

fragments, about 50-170bp long, from the genes 12SrRNA (targeting vertebrates) (e.g., Riaz et 

al. 2011; Miya et al. 2015) and 16SrRNA (mammals, e.g., Taylor 1996, and frogs e.g., Bálint 

et al., 2018) have provided satisfactory results for the identification of the biodiversity when 

working with mixed DNA samples. For plant identification, the use of the genes matK and rbcL 

was complemented with ITS (Hollingsworth 2011; Song et al. 2012) and trnL fragments (Riaz 

et al. 2011; Fanher et al. 2016). The matK has provided better results when used for invasive 

species identification due to the presence of specific regions that amplify only in target species 

(Scriver et al. 2015). ITS2 and rbcL were more efficient in general studies with vascular plants, 

when not using customized reference databases or local surveys (Fahner et al. 2016). However, 

the chloroplast trnL (UAA) intron is proposed as the most suitable marker for plant eDNA 

metabarcoding (Riaz et al. 2011; Coissac et al. 2012), although the reference database must be 

supplemented (Taberlet et al. 2007). 

Since its onset, the number of studies that have addressed different aspects of the 

application of environmental DNA towards the detection of species has increased almost 

exponentially. This has led to a recent and broad knowledge gathered in this field, mainly in 

temperate and already well-studied ecosystems where eDNA and iDNA have been used 

especially for species detection. However, the combination of eDNA and iDNA samples with 

NGS technologies has great potential for population genetic studies, as showed in Adams et al. 

(2019). Still, eDNA and iDNA-based surveys in the neotropical realm, a high biodiversity 

region that is of great conservation concern, are still incipient, and a boost of studies is foreseen 

for the next few years. In the following sections, we will focus on demonstrating how 

eDNA/iDNA approaches have been used to study vertebrate and plant species, with a greater 

focus on the neotropical region. 
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19.2 Environmental samples 

In biodiversity and conservation surveys, a myriad of biological samples can be 

obtained in the environment, including scats or gut content to assess the microbiota, understand 

the species’ food preferences or ultimately, conduct biodiversity assessment by analyzing the 

species which the organisms have fed upon through the identification of gut content, and build 

interaction networks. Samples collected from the environment without the requirement of 

handling and/or seeing the animal or its traces are collectively categorized as environmental 

samples (Lacoursière-Roussel and Deiner, 2021). In eDNA studies, some examples of sampling 

media include soil and sediments to study both micro and macro-organisms (e.g., from bacteria 

to large mammals) (Kestel et al. 2022); permafrost to detect ancient DNA (aDNA) and 

investigate past biodiversity history (Willerslev et al. 2003); air for pathogen detection or even 

in detecting the presence of terrestrial vertebrates such as mammals (Klepke et al. 2022); and 

water, that is widely used to study micro and macro-organisms, allowing the detection of both 

aquatic and terrestrial species. 

 

19.2.1 Water samples 

One of the most popular media used in eDNA studies is water. Taking a few millimeters 

of water from an aquatic environment has already proven to be sufficient to reveal the 

occurrence of aquatic and terrestrial species present in a given area and its surroundings (Deiner 

et al. 2017). In this context, water eDNA has been recognized as providing a more complete 

picture of biodiversity composition when compared to traditional surveys, as well as allowing 

for multi-trophic analysis in metabarcoding studies (Blackman et al., 2022).  

So far, the majority of eDNA studies conducted in neotropical realms used water as the 

main sampling media. Water eDNA samples have been used to detect the presence of invasive 

species such as the freshwater dinoflagellate Ceratium furcoides in Argentina (Accattatis et al. 

2020), the North American crayfish Procambarus clarkii in Ecuador (Riascos et al. 2018) and 

the golden mussel Limnoperna fortunei in Brazil (Pie et al. 2017); to study the fish diversity in 

Argentina (Chalde et al. 2019; Nardi et al. 2020), Brazil (Sales et al. 2019, 2021; Dal Pont et 

al. 2021; Jackman et al. 2021) and French Guiana (Cantera et al. 2019; Cilleros et al. 2019); 

and also, to detect the presence of terrestrial vertebrates in Brazil (Sales et al. 2020) and 

Colombia (Mojica and Caballero 2021; Polanco et al. 2021). 
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Considering that approximately 71 percent of the Earth's surface is covered by water 

and thousands of taxa are expected to inhabit the aquatic ecosystem, retrieving genetic data 

from water samples opens up more opportunities to better detect and monitor species, mainly 

the rare, elusive and often neglected ones, enabling researchers to better understand the 

relationship between species and their habitat. As an example, ecological indices gathered from 

an eDNA study conducted in Curaçao revealed the contrasting anthropogenic pressure on 

functional diversity and species richness of reef fish (Polanco et al. 2022). Moreover, with the 

new and future improvements in the field, eDNA surveys are expected to move forward from 

the biodiversity inventories (e.g., species list) to provide more in-depth ecological data, even 

being able to provide additional population genetics information.  

To some extent, eDNA is expected to be more widespread in aquatic environments and 

easier to capture species’ presence when compared to soil samples. For instance, an integrative 

biodiversity assessment can be obtained across the land-water interface through the analysis of 

eDNA transported in river networks (Deiner et al. 2016). The persistence of eDNA molecules 

can vary greatly depending on sampling media. Water samples are often used to retrieve eDNA 

signals representing a shorter time span (e.g., days), in comparison to other media (e.g., soil – 

days to years, permafrost – thousands of years). The effect of eDNA ecology in distinct 

environments is noteworthy, and the short persistence of eDNA in water is linked to several 

factors that are usually intertwined, such as eDNA origin, state, transport, and fate, with the 

latter being impacted by UV exposure, temperature and other environmental factors (Barnes 

and Turner 2016). However, UV exposure, temperature, and other environmental factors' 

effects on eDNA persistence remain a puzzle for neotropical areas.  

The lack of knowledge regarding the effect of these synergistic environmental factors 

on DNA degradation rates, coupled with largely restricted understanding of eDNA transport in 

neotropical water bodies (e.g., streams, rivers) represents one of the key challenges in 

disentangling signals associated with eDNA vs species ecology. For instance, Sales et al. (2021) 

demonstrated the potential of using water samples to infer spatio-temporal changes in fish 

assemblages, nevertheless, the effect of eDNA transport and degradation on species detection 

could not be assessed. Studies aiming to investigate the eDNA ecology in neotropical realms 

are expected to increase in the forthcoming years, aiming to address these aforementioned 

limitations in providing a fine-scale spatio-temporal resolution of species detection.  

 In order to decrease its degradation and optimize eDNA yield, samples must be 

collected, stored and processed properly (Fig. 19.2). After collection, water eDNA samples 
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require the shed DNA to be captured and/or concentrated, a process often conducted via 

centrifugation, precipitation (Fig. 19.2B) or filtration (Fig. 19.2C). Precipitation refers to a 

chemical process using ethanol to precipitate and isolate the nucleic acids, whereas, filtration 

is employed to retain DNA molecules using a filter of fine mesh, whilst allowing the passage 

of water (Jerde et al. 2011; Eichmiller et al. 2016). Filtration has been widely used and 

considered a better option when retrieving eDNA from water samples. Still, a broad range of 

filters of different compositions and mesh sizes is available and so far, no consensus has been 

reached regarding the best filter pore size and material to be used in eDNA surveys. In 

neotropical areas, it might be even more challenging, as the ideal total volume of water to be 

filtered has not been analyzed across different ecosystems yet. As an example, Lopes et al. 

(2021a) filtered 2 to 30 L of water per sample to investigate the presence of frogs, Cilleros et 

al. (2019) collected approximately 50 L of water in each sample to survey fishes, and Sales et 

al. (2020, 2021) used 500 mL to 1L to recover eDNA from both fish and mammals. Considering 

the vast distinctiveness of habitats to be sampled in the neotropics, it is important to conduct 

pilot tests to evaluate the best filter pore size and composition to be employed. As an example, 

in very turbid and sediment-rich water bodies, the filtration of large volumes of water might be 

impossible if using a fine mesh because the filters can get easily clogged preventing the water 

to go through the filter.  

 

19.2.2 Soil samples 

Soil is also a promising source of DNA to study vertebrate, invertebrate, plant and 

microorganism biodiversity and the interactions of these organisms with the environment (e.g., 

Oliverio et al. 2018; Zinger et al. 2019; Andersen et al. 2021; Nuñez et al. 2021; Ariza et al. 

2022). Unlike in water, DNA can persist in the soil for thousands of years (Haile et al. 2007; 

Barnes and Turner 2016) as it can bind to environmental compounds, such as clay minerals or 

organic compounds, that protects DNA from total degradation (Blum et al. 1997; Crecchio and 

Stotzky 1998). Soil samples can be collected from the surface or from more deep soil profiles, 

if recent or ancient biodiversity is to be assessed, respectively. It is also generally assumed that 

the DNA recovered is the same age as the soil in which it was collected. Although this is a 

reasonable assumption, leaching of DNA to lower strata of soil must be taken into account in 

non-frozen areas, especially in neotropical areas where rain is more frequent and abundant 

(Andersen et al. 2012; Haile et al. 2007).  
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In the case of vertebrates, the identification of species presence through eDNA in soil 

was first applied in areas of permafrost, where DNA is better preserved due to the very low 

temperatures and leaching is expected not to occur (Willerslev et al. 2003; Pedersen et al. 2015). 

The quantity and deepness of DNA in the environment can be influenced by a number of 

biological (animal movement, defecation and other behaviors, demography, rate of cell 

shedding, etc.), edaphic (pH, particle size, organic matter content, etc.) and climatic factors 

(precipitation, temperature, UV exposure, etc.) (Levy-Booth et al. 2007; Andersen et al. 2012; 

Leempoel et al. 2020; Ryan et al. 2022). When these factors are accounted for, eDNA has been 

pointed out to reflect vertebrate abundance and richness from only a few grams of soil 

(Andersen et al. 2012). Soil has already been successfully applied to study a variety of 

vertebrate species (e.g., Kucherenko et al. 2018; Leempoel et al. 2020; Ryan et al. 2022). 

Although microorganisms have been studied through soil DNA in the neotropical region 

(Câmara et al. 2022), the potential of this DNA source for neotropical vertebrates has yet to be 

explored (Carvalho et al. 2022). To our knowledge, only the studies of Ritter et al. (2019) and 

Lopes et al. (2020) have applied this method in soils from the neotropics.  

Ritter et al. (2019) used soil, litter (the organic portion above the mineral soil) and 

insects to test if the east-to-west biodiversity gradient known to occur in the Amazon forest for 

birds and trees could be recovered from eDNA and iDNA data. The authors collected 40 soil 

and 40 litter samples from each of the 39 plots and analyzed the total DNA extracted from the 

samples. A metabarcoding approach was used by amplifying portions of the genes 16SrRNA 

for prokaryotes, and 18SrRNA and COI for eukaryotes. There was no relationship between the 

operational taxonomic units retrieved and the richness of both birds and trees from previous 

field studies. Furthermore, the west-to-east biodiversity gradient was only partially reflected in 

the metabarcoding data, due to the effect of outliers in the dataset, which was pointed to be a 

result of the particularities of each studied area. 

Lopes et al. (2020) analyzed litter as a source of eDNA to study the biodiversity of 

vertebrates, with a special focus on anurans, in an area of the Atlantic Forest in Brazil. Authors 

collected 32 samples of litter that were later combined into two bulks of 1 kg each. Litter was 

washed with a mixture of water and buffer and filtered in a fine cellulose membrane. Total and 

extracellular DNA was extracted from the membrane. A portion of the genes 18SrRNA for 

eukaryotes and 12SrRNA for vertebrates and anurans was analyzed. The authors were able to 

retrieve a large eukaryotic diversity with the 18SrRNA gene, but only two sequences 

corresponding to anuran species with the 12SrRNA gene. They considered the analysis of 
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eDNA obtained from litter a successful method to characterize the eukaryotic community. Low 

rate of shedding by amphibians, low number of sampling replicates, low volume of litter 

collected may have affected the detection of anurans in the area, since these species were 

observed by researchers in the litter during sampling. 

As seen, soil is still beginning to be used and understood as a source of environmental 

DNA from vertebrates, especially in the neotropics. A few peculiarities of each study area must 

be taken into account when planning future eDNA studies from soil samples. For example, soils 

that are acidic or go through a process of acidification could reduce DNA absorption by the 

soil, as well as higher precipitation can contribute to a higher leaching of DNA (Allemand et 

al. 2007). Furthermore, the presence of DNA traces in the soil depends heavily on species 

abundance and soil use (Leempoel et al. 2020; Lopes et al. 2021b; Ryan et al. 2022). Unlike 

microorganisms that are spread across the soil, vertebrates move, defecate, urinate, shed cells 

and perform other behaviors not uniformly on the soil, depending on complex biotic and abiotic 

interactions. Thus, the amount of soil needed to detect biodiversity also varies, from a few 

grams in a controlled environment (Andersen et al. 2012) to several liters or kilograms in a 

natural environment (Leempoel et al. 2020; Lopes et al. 2020). This method can also benefit 

from a more targeted sampling in trails of frequent use or with the use of fences that direct 

species movement to where soil will be collected (Ryan et al. 2019; Burns et al. 2020). The 

advantages of using soil to sample vertebrate DNA are that (i) due to the role of soil as a source 

of DNA for microorganism studies, there are highly efficient commercial kits available that are 

specially designed to extract DNA from soil, that can be applied to studies focusing on higher 

taxonomic groups, and (ii) soil samples require low maintenance and processing in the field. 

 

19.2.3 Alternative sources of DNA to assess the biodiversity and species ecology 

Scat samples, especially those from species that have a generalist feeding habit, are also 

a powerful source of genetic material. Scats can provide data to assess biodiversity through the 

identification of the species that deposited the scats and the species that were fed on, thus 

allowing researchers to obtain information on species presence, distribution and diet. From 

these data, it is also possible to make inferences about species' ecological aspects such as 

networks, and spatial and temporal interactions. Recent studies with rodents (Lopes et al. 2020), 

bats (Ingala et al. 2021; Martínez-Fonseca et al. 2022) and large carnivores (Quéméré et al. 

2021) have made it possible to corroborate or question the knowledge we currently have about 

the diet of these species in neotropical environments.  



9 

Using an indirect and combined approach, Lopes et al. (2020) were able to study the 

niche overlap of seven rodent species of the Ctenomys genus, that live in South America. 

Through the metabarcoding approach, the authors used rodent scats and soil to investigate plant 

consumption and plant availability, respectively. Scats were obtained from captured rodents 

and in burrows used by the species. Authors amplified regions of the P6 loop of the chloroplast 

trnL (UAA) intron and the first internal transcribed spacer (ITS1) of nuclear ribosomal genes 

to detect plant species in scat and soil samples. They found that the rodent species consumed 

60% of the plant species detected in the soil samples, indicating that these species present a 

generalist feeding habitat. This result not only revealed the feeding habitat, but also that the 

allopatric distribution of the rodents reduces interspecific competition for the same resources.  

Elusive species such as bats, which are characterized by their small size and nocturnal 

and volant behavior, are another good example of a group that can benefit from the use of 

molecular methods to study diet, because it is difficult to observe their feeding habits. In the 

study of Martínez-Fonseca et al. (2022), the metabarcoding approach was used to investigate 

the diet of the Vampyrum spectrum, a carnivorous bat, in Nicaragua. Scat samples from this 

species were collected directly under bats in roots and fragments of the COI, 12SrRNA and 

18SrRNA genes targeting vertebrate and arthropod DNA were sequenced using the 

metabarcoding approach. This study revealed a total of 27 different vertebrate species in the 

bat diet, including birds, rodents and other bat species, besides arthropods, indicating that V. 

spectrum forages opportunistically. In another study, Ingala et al. (2021) investigated the diet 

of 25 bat species that co-occur in Belize, using DNA metabarcoding for detection of 

vertebrates, invertebrates and plants. Bats were captured and placed into cloth bags, where they 

defecated, and scats were collected. This effort allowed the authors to document bat diet at a 

multi-trophic level and fine-scale association between bat species and dietary items, showing 

that most of the studied species do not have restricted diets and that their habits are rather 

opportunistic. Although Ingala et al. (2021) did not propose to provide a full dietary niche 

breadth for the 25 species, because it would require many replicates, this study paved the way 

for future studies that aim to understand the coexistence and niche partition in bat assemblages.  

Carnivores are also known to be generally elusive, rare (occur at low densities either 

because of natural or anthropogenic causes) and difficult to capture. This group plays an 

important role in ecosystems by regulating the population of other trophic levels, therefore, 

having a better comprehension of carnivore species diet is a pivotal concern that also supports 

the verification of ecosystems health. For example, the diet of the Endangered riverine 
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Pteronura brasiliensis, the giant otter, was assessed by collecting scats deposited in communal 

latrines along river banks or on small islands, in French Guiana (Quéméré et al. 2021). Authors 

also used a metabarcoding approach based on portions of the 12S and COI genes targeting 

vertebrate and invertebrate species, respectively. In this study, scat DNA-based metabarcoding 

was more efficient than conventional methods to study otter diet. It revealed the presence of 

species from several groups in the giant otter diet, including fishes, amphibians, snakes, birds 

and earthworms, and provided a basis to better understand possible human-otter conflict due to 

predation on species that are valuable as resources for human populations.  

Some of the more elusive species are difficult to study. For example, little is known 

about the plant-animal interactions of the lowland tapir Tapirus terrestris despite their known 

role as engineers of the ecosystem. Hibert et al. (2013) studying the scats of the lowland tapir 

using metabarcoding succeeded in establishing the diet of this large mammal with great 

taxonomic resolution, increasing in two new families and eight genera the list of plants 

consumed by the species. 

All these examples highlight the potential of scat DNA-based metabarcoding to 

investigate species diet with high accuracy, also supporting the exploration of ecological 

implications from that. Moreover, the information obtained from diet studies can be interpreted 

as a biodiversity assessment, especially when studying the diet of generalist species. Thus, diet 

metabarcoding can be an effective, noninvasive, and economically viable method for 

biodiversity monitoring, supporting management decisions (Noggard et al. 2021; Shao et al. 

2021). 

 

19.3 Invertebrate-derived DNA (iDNA) 

Another complementary and more recent approach to biodiversity inventories is the 

detection of vertebrate species from DNA obtained through gut content of invertebrates that 

feed on vertebrates or from the insects that use the vertebrates to fulfill vital functions of their 

cycle (ingested-derived DNA or invertebrate-derived DNA, iDNA) (Calvignac-Spencer et al. 

2013; Rodgers et al. 2017). Using invertebrates, such as carrion flies and mosquitoes for 

sampling DNA of vertebrates is advantageous because these insects are cosmopolites, can be 

easily sampled using commercial and handmade traps (Fig. 19.3), and can feed on all terrestrial 

vertebrates (Norris, 1965; Lynggard et al. 2019). Other invertebrates that feed on vertebrates 

and can be used as samplers include dung beetles (Drinkwater et al. 2021) (Fig. 19.4), leeches 

(Schnell et al. 2015), sandflies (Massey et al. 2021). The iDNA approach can aid the 
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biomonitoring of vertebrates that are elusive, rare or present in low population density, and in 

regions of high biodiversity, such as the neotropics, that are notably areas where a large portion 

of the local biodiversity remains unknown. However, the use of this approach in the neotropics 

has been narrowly explored (Carvalho et al. 2022). To date, only six studies used iDNA focused 

to obtain information about vertebrate communities in the neotropical region. Rodgers et al. 

(2017) compared the effectiveness of iDNA obtained from carrion flies and traditional methods 

to survey a well-documented mammal community in Barro Colorado Island, Panama. Although 

the authors focused on detecting mammal species, other vertebrate species were also recorded, 

because a mammal-specific (16SrRNA, Taylor 1996) and a broader vertebrate-specific mini-

barcodes (12SrRNA, Riaz et al. 2011) were used. A total of 20 mammal species, four birds and 

one lizard were detected by carrion fly iDNA, a larger number of species than that obtained by 

the traditional methods (transect court = 13 species; camera-trap = 17 species; iDNA = 25 

species) (Rodgers et al. 2017). 

Lynggard et al. (2019) asked if it would be possible to detect vertebrate DNA without 

targeting a specific vertebrate-feeding invertebrate but using arthropod bulk samples. The 

authors investigated this question by collecting bulk arthropod samples in two regions, 

including a neotropical area in Brazil and amplifying the same mini-barcodes as Rodgers et al. 

(2017). Fourteen vertebrate species were recovered in the neotropical region, including 

anurans, carnivores, chiropterans, primates, artiodactyls and other mammals. This method was 

efficient in recovering vertebrate biodiversity, as it does not require prior taxonomic knowledge 

of the collected arthropod taxa and reduces laboratory procedures because arthropods do not 

need to be processed individually (e.g., preparation and DNA extraction). Authors pointed to 

the need for a detailed assessment of the number of replicates required to comprehensively 

assess vertebrate diversity, but also indicated that iDNA from arthropod bulks paired with 

metabarcoding could serve as a supplementary method to vertebrate monitoring. 

 In the study of Massey et al. (2021), authors compared the effectiveness of three 

invertebrates (carrion flies, sandflies and mosquitoes) as iDNA samplers to survey vertebrates 

in the Amazon region, Brazil. In this area, carrion fly DNA was the best method for landscape 

scale biodiversity surveillance as it retrieved higher vertebrate richness than mosquitoes and 

sandflies (gamma diversity). Also, mosquitoes and sandflies showed a feeding preference for 

humans and armadillos (Dasypodidae family), respectively. In the same study, iDNA results 

were compared to camera trapping surveys and, although camera trapping showed the highest 

mean species richness at site-level, it also showed a detection bias towards carnivore and 
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ungulate species (alpha diversity). Much of the biodiversity detected by the iDNA method was 

not evidenced by the camera-traps, as this latter method was biased towards large-bodied 

mammals. These results highlight that the combination of different iDNA samplers can provide 

better representativeness of the biodiversity.  

Considering that iDNA is still narrowly explored in the neotropical region for 

biodiversity assessment, Saranholi et al. (2022) aimed to assess the effectiveness of the iDNA 

approach for surveying terrestrial mammals in a semi-controlled area, a zoo that houses several 

mammal species. The effectiveness of mosquitoes and flies as iDNA samplers were compared 

by the number of mammal species detected and by the distance between the trap where an insect 

was captured and the enclosure of the mammal whose DNA was ingested by the insect. To 

achieve this, differently from the previous studies, each insect captured was analyzed 

individually. A total of 45 OTUs were recovered. There was no difference between the number 

of mammal species recovered per individual insect, but the number of flies captured was higher 

than that of ingurgitated female mosquitoes, resulting in more mammal species recovered by 

flies. Eight and twenty mammals were recorded exclusively by mosquitoes and flies, 

respectively, suggesting that the use of both samplers allowed a more comprehensive screening 

of the biodiversity. The maximum distance recorded between an insect and the enclosure of the 

mammal that were fed upon was 337 m for flies and 289 m for mosquitoes, not differing 

significantly between groups. These results are helpful to raise insights to guide further 

sampling design and calibrate efforts for surveying mammals in high biodiversity areas, such 

as the neotropical region. 

Besides the examples of iDNA applications cited above that have focused on surveying 

vertebrate communities and used a metabarcoding approach, iDNA can also be used to study 

host-vector interactions. Araujo-Pereira et al. (2020) and Rodrigues et al. (2021) investigated 

the mammal DNA presents in the blood meal of sandflies from the Psychodidae family, a 

Diptera that can transmit the protozoa that causes leishmaniasis. The identification of blood 

meal sources of the sandflies and other insects that serve as disease vectors is an important step 

for vertebrate host identification, supporting the control of vector borne diseases. Both studies 

captured sandflies in the Amazonian region, Brazil, and identified the vertebrate species from 

the insect blood meal by sequencing (Sanger) a mini-barcode of the Cytb mitochondrial gene. 

Humans, the nine-banded armadillo (Dasypus novemcinctus) and the lesser anteater 

(Tamandua tetradactyla) were the most frequent mammal species detected in the study of 

Araujo-Pereira et al. (2020), while the nine-banded armadillo was the most common species 
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detected by Rodrigues et al. (2021) in the blood meals. Of note, both studies reported many 

sequences lacking sufficient quality for species identification. This could be explained by the 

use of the Sanger-based sequencing that does not allow the precise analysis of mixed sources 

of DNA. In this sense, the use of metabarcoding sequencing must be preferred in future studies 

that aim to investigate host-vector interactions in the neotropical region.  

 

19.4 Challenges and Perspectives 

 19.4.1 Methodological concerns 

The incompleteness of the reference databases is often assumed as one of the main 

limitations to eDNA-based surveys reaching their full potential in megadiverse areas (Jackman 

et al. 2021). Metabarcoding analyses are usually heavily impacted by the quality of databases 

as it relies on the taxonomic assignment obtained through a comparison between the DNA data 

retrieved metabarcoding sequencing and the reference sequences available. In the absence of 

such reference data, a massive amount of data might be lost, consequently leading to an 

underestimation of the total biodiversity recovered. Particularly in the hyper-diverse neotropics, 

the lack of reference sequences in public databases has been reported as a critical aspect that 

limits the use of metabarcoding (Kocher et al. 2017; Rodgers et al. 2017; Banerjee et al. 2022) 

and efforts to produce such sequences are still needed, as already pointed by Carvalho et al. 

(2022). 

The impact of reference databases is not limited to metabarcoding applications and can 

also affect single-species essays (e.g., qPCR, ddPCR studies). The establishment of sound 

eDNA detection through qPCR essays relies on the quality and suitability of genes, primers and 

probes specificity used. To ensure the robustness of essays, previous analyses should be 

conducted on the search for potential confounding taxa, including information about closely 

related taxa (Langlois et al. 2020). The urge for increasing the reference data for a broader 

range of species is therefore shared across all aforementioned eDNA/iDNA methods. Many 

researchers agree with this need and therefore there are initiatives to identify the major gaps in 

the genetic basis (e.g., Marques et al. 2021). 

Completing the databases and having genes that complement the identification of all 

species will not be enough to perform reliable surveys, since all species are not sampled with 

the same ease, probability or sampling technique (e.g., Massey et al. 2021, Saranholi et al. 

2022). Thus, the use of traditional methodologies combined with eDNA and metabarcoding 

can reach more reliable and faster results, improving cost-benefit ratios (Carvalho et al. 2022). 
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Also, techniques such as capture enrichment are being developed to increase DNA yield and 

reduce bias in species detection (Wilcox et al. 2018).  

Exogenous contamination also represents an important concern in the eDNA/iDNA 

approach, which can occur at any step (sampling, DNA extraction, PCR, and sequencing). To 

avoid this, it is important to conduct the studies in an eDNA-dedicated laboratory using UV-

sterilized room (Fig. 19.4D) and exclusive equipment for such purposes (centrifuges, 

thermocycler, pipettes, lab coats, etc.). Since human DNA contamination is almost imminent, 

the use of blockers during PCR has shown successful results (e.g., Boessenkool et al. 2012) and 

is highly accepted among the scientific community. However, the use of these tools should be 

treated with caution, since the identification of some taxonomic groups may be affected by 

using blockers of phylogenetic related species (for example, humans and primates). 

 With reduced costs of sequencing, high throughput sequencing is becoming more 

available. However, the potential of this type of sequencing is still deeply underexplored in the 

neotropical region, mainly because reagents and equipment are imported, making services 

being charged in dollars or euros or other currency, which incurs comparatively high costs of 

this type of sequencing. Besides the decrease in sequencing costs, new possibilities of types of 

sequencing and applications for eDNA/iDNA are emerging, such as genomic and metagenomic 

analyses (Seeber and Epp 2022). 

Different methods to collect samples that can decrease contamination and improve 

eDNA sampling, such as automated water collection, are still being developed, tested and 

improved (Sepulveda et al. 2020, 2021; Wandhekar et al. 2021). One of the approaches that 

can present a high cost-benefit relationship is what has utilized air samples to collect pollen and 

survey plant species (i.e., Kraaijeveld et al. 2015). The methodology has proven to be very 

efficient to identify the species and, to our knowledge, it has not been used to sample high 

biodiversity regions such as the neotropics. With improved collection, sequencing and 

analyzing tools for eDNA, we also expect to be able to use environmental DNA data for other 

applications, such as a source of information for population genetics. Although some studies 

have been able to study aspects of population genetics from eDNA (Sigsgaard et al. 2017; Baker 

et al. 2018), this field is still on its onset as the identification of individuals is still an obstacle 

because it relies mostly on nuclear markers that can be lost more easily to environmental 

degradation (Adams et al. 2019). 

 

19.4.2 Conservation remarks  
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The eDNA and iDNA sampling combined with the molecular tools and the advances in 

the NGS technologies present a great sensitivity for species detection along with reduced costs 

in comparison to traditional methods, which creates a remarkable opportunity to advance 

biodiversity monitoring (Sutherland et al. 2013; Cristescu 2014; Kelly et al. 2014b). Also, 

eDNA and iDNA approaches permit noninvasive monitoring, reducing the risks involved in 

using methods based on species capture, which is critical especially for threatened species. 

The number of environmental DNA surveys has seen an exponential increase in the past 

decade. However, there is a heavy bias on the proportion of studies towards the global North, 

with this application still remaining incipient in neotropical countries (Carvalho et al. 2022; 

Schenekar 2022). Although there are clear advantages with the eDNA and iDNA approaches, 

it is still little explored in the neotropical region (Carvalho et al. 2022). 

Despite the potential highlighted to survey biodiversity through environmental DNA, 

there are still few official monitoring initiatives using this methodology. It is imperative for 

eDNA/iDNA to be acknowledged by government agencies as a valid monitoring tool so that 

standards (e.g., sampling protocols, minimum replicates, data processing) and maximum error 

values can be defined (Kelly et al. 2014a). The conduction of experiments in controlled 

situations is expected to generate the necessary data, but this is still deficient in the highly 

diverse neotropical region where protocols and standards from temperate regions do not apply 

completely.  
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Figure captions 

Fig. 19.1 Diagram of environmental DNA (eDNA) and invertebrate-derived DNA (iDNA) 

applications for surveying and monitoring biodiversity. 

 

Fig. 19.2 Field and laboratory procedures for water eDNA samples. A) collection of the water 

sample; B) filtration of water samples in a filter using a manual vacuum pump and C) 

precipitation of the nucleic acids from eDNA water samples. 

 

Fig. 19.3 Traps used to capture insects, modified to study iDNA, preserving the captured insects 

immediately in alcohol and avoiding the degradation of the genetic material. A) CDC-type trap 

used to capture mosquitoes; B) Trap made with a plastic bottle baited with a piece of meat to 

attract flies. 

 

Fig. 19.4 Field and laboratory procedures for iDNA analyses using the dung beetles as 

samplers. A) Collection of the dung beetles using pitfall traps; B) Dissecting the beetles' gut; 

C) Digesting the beetles' gut for DNA extraction; D) Performing PCRs in a sterile room for 

mini-barcodes amplification. 

 


